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Abstract

Since the introduction of General-Purpose GPU computing, there has been a sig-
nificant increase in ray traversal performance on the GPU. While CPU’s perform rea-
sonably well on coherent rays with similar origin and direction, on current hardware
the GPU vastly outperforms the CPU when it comes to incoherent rays, required for
unbiased rendering. A number of path tracers have been implemented on the GPU,
pulling unbiased physically based rendering to the GPU. However, since the introduc-
tion of the path tracing algorithm, the field of unbiased physically based rendering has
made significant advances. Notorious improvements are BiDirectional Path Tracing
and the Metropolis Light Transport algorithm. As of now little effort has been made to
implement these more advanced algorithms on the GPU.

The goal of this thesis is to find efficient GPU implementations for unbiased phys-
ically based rendering methods. The CUDA framework is used for the GPU imple-
mentation.

To justify the attempts for moving the sampling algorithm to the GPU, a hybrid
architecture is investigated first, implementing the sampling algorithm on the CPU
while using the GPU as a ray traversal and intersection co-processor. Results show
that today’s CPU’s are not well suited for this architecture, making the CPU memory
bandwidth a large bottleneck.

We therefore propose three streaming GPU-only rendering algorithms: a Path
Tracer (PT), a BiDirectional Path Tracer (BDPT) and an Energy Redistribution Path
Tracer (ERPT).

The streaming PT uses compaction to remove all terminated paths from the stream,
leaving a continuous stream of active samples. New paths are regenerated in large
batches at the end of the stream, thereby exploiting primary ray coherence during
traversal.

A streaming BDPT is obtained by using a recursive reformulation of the Multiple
Importance Sampling computations. This requires only storage for a single light and
eye vertex in memory at any time during sample evaluation, making the method’s



memory-footprint independent of the maximum path length and allowing high SIMT
efficiency.

We propose an alternative mutation strategy for the ERPT method, further improv-
ing the convergence of the algorithm. Using this strategy, a GPU implementation of
the ERPT method is presented. By sharing mutation chains between all threads within
a GPU warp, efficiency and memory coherence is retained.

Finally, the performance of these methods is evaluated and it is shown that the
convergence characteristics of the original methods are preserved in our GPU imple-
mentations.
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Chapter 1

Introduction

Since the introduction of computer graphics, synthesizing computer images has found many
useful applications. Of these, the best known are probably those in the entertainment indus-
tries, where image synthesis is used to create visually compelling computer games and to
add special effects to movies. Besides these and many others, important applications are
found in advertisement, medicine, architecture and product design. In many of these appli-
cations, image synthesis is used to give a realistic impression of the illumination in virtual
3D scenes. For example, in architecture, CG is used to answer questions about the illumi-
nation in a designed building [15]. Such information is used to evaluate the design before
realizing the building. In advertising and film production, computer graphics is used to
combine virtual 3D models with video recordings to visualize scenes that would otherwise
be impossible or prohibitively expensive to capture on film. Both these applications require
a high level of realism, giving an accurate prediction of the appearance of the scene and
making the synthesized images indistinguishable from real photos of similar scenes in the
real world.

Physically based rendering algorithms use mathematical models of physical light trans-
port for image synthesis and are capable of accurately rendering such realistic images. For
most practical applications, physically based rendering algorithms require a lot of compu-
tational power to produce an accurate result. Therefore, these algorithms are mostly used
for off-line rendering, often on large computer clusters. This lack of immediate feedback
complicates the work for the designer of virtual environments.

To get some immediate feedback, the designer usually resorts to approximate solutions
[6, 32, 36, 55]. Although interactive, these approximations sacrifice accuracy for perfor-
mance. Complex illumination effects such as indirect light and caustics are roughly approx-
imated or completely absent in the approximation. Figure 1.1 shows the difference between
an approximation1 and a physically based rendering. Although the approximation looks
plausible, it is far from physically accurate. The lack of accuracy reduces its usefulness to
the designer. Designers would benefit greatly from interactive or near-interactive physically
based rendering algorithms on a single workstation for fast and accurate feedback on their

1This approximation algorithm simulates a single light indirection and supports only perfect specular and
perfect diffuse materials.

1
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(a) (b)

Figure 1.1: Rendering of the GLASS EGG scene with (a) an approximation algorithm and
(b) a physically based algorithm.

designs.
The speed of physically based rendering can be improved by either using more advanced

algorithms, or by optimizing the implementation of these algorithms. Since the advent of
physically based rendering, several advanced physically based rendering algorithms, capa-
ble of rendering very complex scenes, have been developed and implemented on the CPU.
At the same time, many fast approximation algorithms have been developed for the GPU.
Because these algorithms are used by most modeling software packages, modeling work-
stations usually contain one or more powerful GPUs. Nowadays, these GPUs often provide
more raw processing power and memory bandwidth than the workstations main proces-
sor and system memory [13]. Therefore, the performance of a physically based rendering
algorithm could benefit greatly from utilizing the available GPUs.

The goal of this thesis will be to find efficient GPU implementations for physically
based rendering algorithms. Parts of these algorithms, such as ray-scene intersection tests,
have already been efficiently implemented on the GPU, significantly outperforming similar
CPU implementations. Furthermore, some simple rendering algorithms have been fully
implemented on the GPU. However, little effort has been made to implement more advanced
physically based rendering algorithms on the GPU. Implementing these algorithms on the
GPU will allow for a wider range of scenes to be rendered accurately and at high speed
on a single workstation. In the following sections, we will give a brief summary of our
contributions and give a short overview of the thesis outline.

2



Introduction 1.1 Summary of Contributions

1.1 Summary of Contributions

In this thesis we will present the following contributions:

• We present a general framework for hybrid physically based rendering algorithms
where ray traversal is performed on the GPU while shading and ray generation are
performed on the CPU.

• We show that on modern workstations the performance of a hybrid architecture is
limited by the memory bandwidth of system memory. This reduces scalability and
prevents the full utilization of the GPU, justifying our further attempts to fully imple-
ment the rendering algorithms on the GPU.

• We present an alternative method for computing Multiple Importance Sampling weights
for BDPT. By recursively computing two extra quantities during sample construction,
we show that the weights can be computed using a fixed amount of computations and
data per connection, independent of the sample path lengths. This allows for efficient
data parallel weight computation on the GPU.

• We introduce the notion of mutation features and use these to investigate the noise
occurring in ERPT. We show that structural noise patterns in ERPT can be understood
in the context of mutation features.

• We propose an alternative mutation strategy for the ERPT method. We show that
by increasing mutation feature size, our mutation strategy trades structural noise for
more uniform noise. This allows for longer mutation chains, required for an efficient
GPU implementation.

• We present streaming GPU implementations of three well known, physically based
rendering algorithms: Path Tracing (PT), BiDirectional Path Tracing (BDPT) and En-
ergy Redistribution Path Tracing (ERPT). We show how our implementations achieve
high degrees of coarse grained and fine grained parallelism, required to fully utilize
the GPU. Furthermore, we discuss how memory access patterns are adapted to allow
for high effective memory bandwidth on the GPU.

– We show how to increase the ray traversal performance of GPU samplers by
immediately packing output rays in a compact output stream.

– Furthermore, we show that immediate sampler stream compaction can be used
to speed up PT and increase ray traversal performance further by exploiting
primary ray coherence.

– We present a streaming adaption of the BDPT algorithm, called SBDPT. We
show how our recursive computation of MIS weights allows us to only store
a single light and eye vertex in memory at any time during sample evaluation,
making the methods memory footprint independent of the path length and al-
lowing for high GPU efficiency.
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– By generating mutation chains in batches of 32, our ERPT implementation real-
izes high GPU efficiency and effective memory bandwidth. All mutation chains
in a batch follow the same code path, resulting in high fine grained parallelism.

• We compare the three implementations in terms of performance and convergence
speed. We show that the convergence characteristics of the three rendering algorithms
are preserved in our adapted GPU implementations. Furthermore, we show that the
performance of the algorithms are all in the same order of magnitude.

1.2 Thesis Outline

The thesis is divided in three parts. Part I contains background information on the subject
of unbiased rendering and GPGPU programming. In chapter 2, we will give a short in-
troduction to physically based rendering. In this discussion, we will emphasize the use of
importance sampling to improve physically based rendering algorithms and show how this
naturally leads to the three well known rendering algorithms PT, BDPT and ERPT. This
chapter will introduce all related notation and terminology we will be using in the rest of
this thesis. Next, in chapter 3, we give an overview of the General Purpose GPU architec-
ture in the context of CUDA: the parallel computing architecture developed by NVIDIA
[13]. In our discussion we will focus mainly on how to achieve high parallelism and mem-
ory bandwidth, which translates to high overall performance. Finally, we will discuss the
parallel scan primitive. In chapter 4 we discuss related work on ray tracing and unbiased
rendering using the GPU. We will further discuss some variations on the unbiased rendering
algorithms not mentioned in chapter 2.

In part II we present the main contributions of this thesis. We start with a problem
statement in chapter 5. In chapter 6, we investigate a hybrid architecture where the render-
ing algorithm is implemented on the CPU, using the GPU for ray traversal and intersection
only. We will show that the CPU side easily becomes the bottleneck, limiting the perfor-
mance gained by using a GPU. Following, in chapter 7, we present our GPU Path Tracer.
First, we present the Two-Phase PT implementation which forms a starting point for the
BDPT and EPRT implementations in later chapters. We will further show how to improve
the performance of this PT through stream compaction, resulting in a highly optimized im-
plementation. After that, we present our SBDPT algorithm in chapter 8. We first present
a recursive formulation for Multiple Importance Sampling and show how this formulation
is used in the SBDPT algorithm, allowing for an efficient GPU implementation. Finally, in
chapter 9, we study the characteristics of the ERPT mutation strategy using the concept of
mutation features. We will then propose an improved mutation strategy, which we use in
our ERPT implementation. Next, we present our streaming ERPT algorithm and its GPU
implementation.

Finally, in part III, we discuss our findings. We first compare the performance and
convergence characteristics of the three GPU implementations in chapter 10. We conclude
this thesis in chapter 11, with a discussion and some ideas for future work.

Lastly, the appendix provides a small glossary of frequently used terms and abbrevia-
tions and further details on the PT, BDPT and ERPT algorithms.
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Preliminaries
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Chapter 2

Unbiased Rendering

In this chapter, we will give a short introduction to physically based rendering. In this dis-
cussion, we will emphasize the use of importance sampling to improve physically based
rendering algorithms and show how this naturely leads to the three well known rendering
algorithms: Path Tracing, BiDirectional Path Tracing and Energy Redistribution Path Trac-
ing. This chapter will also introduce all related notation and terminology we will be using in
the rest of this thesis. For a more thorough discussion on most of the topics encountered in
this chapter, we redirect the reader to [16]. For an extensive compendium of useful formulas
and equations related to unbiased physically based rendering. we refer to [17, 2].

2.1 Rendering equation

x

x'

x''

Figure 2.1: Geometry for the light transport equation.

Physical based light transport in free space (vacuum) is modeled by the light transport
equation. This equation describes how radiance arriving at surface point x′′ from surface
point x′ relates to radiance arriving at x′ (figure 2.1). Because light transport is usually
perceived in equilibrium, the equation describes the equilibrium state:

L
(
x′→ x′′

)
= Le

(
x′→ x′′

)
+
∫

M
L
(
x→ x′

)
fs
(
x→ x′→ x′′

)
G
(
x↔ x′

)
dAM (x) (2.1)
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2.1 Rendering equation Unbiased Rendering

In this equation, L(x′→ x′′) is the radiance arriving at surface point x′′ from surface point
x′ due to all incoming radiance at x′ from all surface points M. M is the union of all scene
surfaces. Le (x′→ x′′) is the radiance emitted from x′ arriving at x′′. fs (x→ x′→ x′′) is
the Bidirectional Scattering Distribution Function (BSDF), used to model the local surface
material. It describes the fraction of radiance arriving at x′ from x that is scattered towards
x′′. Finally, G(x↔ x′) is the geometric term to convert from unit projected solid angle to
unit surface area.

G
(
x↔ x′

)
= V

(
x↔ x′

) |cos(θo)cos(θ′i)|
||x− x′| |2

(2.2)

In this term, V (x↔ x′) is the visibility term, which is 1 iff the two surface points are visible
from one another and 0 otherwise. θ′i and θo are the angles between the local surface normals
and respectively the incoming and outgoing light flow.

The light transport equation is usually expressed as an integral over unit projected solid
angles instead of surface area, by omitting the geometric factor and integrating over the
projected unit hemisphere. We will however only concern ourselves with the surface area
formulation.

In the context of rendering, the transport equation is often called the rendering equation.
When rendering an image, each image pixel j is modeled as a radiance sensor. Each sensor
measures radiance over surface area and has a sensor sensitivity function Wj(x→ x′), de-
scribing the sensor’s sensitivity to radiance arriving at x′ from x. Let I be the surface area
of the image plane, then the measurement equation for pixel j equals:

I j =
∫

I×M
Wj
(
x→ x′

)
L
(
x→ x′

)
G
(
x↔ x′

)
dAI

(
x′
)

dAM (x) (2.3)

In this thesis, we used a sensor sensitivity function corresponding to a simple finite aperture
camera model. For more details on the finite aperture camera model, see appendix C.

Note that the expression for radiance L is recursive. Each recursion represents the scat-
tering of light at a surface point. A sequence of scattering events represents a light transport
path from a light source to the pixel sensor. The measured radiance leaving a light source
and arriving at the image plane along some light transport path x0...xk ∈ I×Mk, can be
expressed as:

f j(x0 · · ·xk) =Le (xk→ xk−1)G(xk→ xk−1)
k−1

∏
i=1

fs (xi+1→ xi→ xi−1)G(xi↔ xi−1) ·

Wj (x1→ x0)

(2.4)

This function is called the measurement contribution function. The surface points x0 · · ·xk
are called the path vertices and form a light transport path X of length k (see figure 2.2).
Note that the vertices on the path are arranged in reverse order, with x0 on the image plane
and xk on the light source. This is because constructing a path in reverse order, from eye
to light source, is often more convenient. The recursion in the measurement equation is
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Figure 2.2: Measurement contribution function for an example path.

removed by expanding the equation to

I j =
∞

∑
k=1

∫
I×Mk

f j (x0 · · ·xk)dAI(x0)dAM(x1) · · ·dAM(xk) (2.5)

The set of all light transport paths of length k is defined as Ωk = I ×Mk. This gives
rise to a unified path space, defined as Ω =

⋃
∞
i=1 Ωi and a corresponding product measure

dΩ(Xk) = dAI (x0)× dAM (x1)×·· ·× dAM (xk) on path space. The measurement integral
can be expressed as an integral of the measurement contribution function over this unified
path space, resulting in

I j =
∫

Ω

f j(X)dΩ(X) (2.6)

In this equation, the measurement contribution function f j describes the amount of energy
per unit path space as measured by sensor j. Physical based rendering concerns itself with
estimating this equation for all image pixels.

2.2 Singularities

Many of the aforementioned functions may contain singularities. For example, the BSDF of
perfect reflective and refractive materials is modeled using Dirac functions. Furthermore,
Le may exhibit singularities to model purely directional light sources. Finally, common
camera models such as the pinhole camera are modeled using Dirac functions in the sensor
sensitivity functions Wj. Special care must be taken to support these singularities. In this
work, we assume that the camera model contains a singularity and that BSDF’s may exhibit
singularities. However, unless explicitly addressed, we assume that light sources do not
exhibit singularities.

Heckbert introduced a notation to classify light transport paths using regular expressions
of the form E (S|D)∗L [24]. Each symbol represents a path vertex. E represents the eye and
is the first path vertex. This vertex is followed by any number of path vertices, classified
as specular(S) or diffuse(D) vertices. A path vertex is said to be specular whenever the
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2.3 Unbiased Monte Carlo estimate Unbiased Rendering

scattering event follows a singularity in the local BSDF, also called a specular bounce.
Finally, the last vertex is classified as a light source(L). We refer to the classification of a
path as its signature.

2.3 Unbiased Monte Carlo estimate

The measurement equation contains an integral of a possibly non-continuous function over
the multidimensional path space. Therefore, the measurement equation is usually estimated
using the Monte Carlo method. The Monte Carlo method uses random sampling to esti-
mate an integral. The idea is to sample N points X1 · · ·XN according to some convenient
probability density function p : Ω→ R. Then, the integral I =

∫
Ω

f (x)µ(x) is estimated as
follows

I = E [FN ]≈ FN =
1
N

N

∑
i=1

f (Xi)
p(Xi)

(2.7)

This estimator FN is called unbiased because its expected value E [FN ] equals the desired
outcome I, independent of the number of samples N. Note that a biased estimator may still
be consistent if it satisfies limN→∞ FN = I, that is, the bias goes to zero as the number of
samples goes to infinity.

In the context of rendering, the N samples used in the estimate are random light transport
paths from unified path space. These paths are generated by a sampler. Possible samplers
are the Path Tracing sampler(PT), BiDirectional Path Tracing sampler(BDPT) or Energy
Redistribution Path Tracing(ERPT) sampler, discussed in later sections. The different sam-
plers generate paths according to different probability distributions.

Generating a path is usually computationally expensive because it requires the tracing
of multiple rays through the scene. Although a sampler may generate one independent path
at a time, it is often computationally beneficial to generate collections of correlated paths.
From now on, when referring to a sample generated by some sampler, we mean such a
collection of paths generated by the sampler. When generating collections of paths, special
care must be taken to compute the probability with which each path is generated by the
sampler. A simple solution is to partition path space, allowing a sampler to generate at
most one path per part within each sample; for example by using the partition Ω =

⋃
∞
i=1 Ωi

and allowing at most one path per collection for each path length. This often simplifies
computations considerably. In the next section, this method is used in the PT sampler.

2.4 Path Tracing

In path tracing, a collection of paths is sampled backward, starting at the eye. Figure 2.3
shows a single path tracing sample. A sampler starts by tracing a path y0 · · ·yk backwards
from the eye, through the image plane into the scene. The path is repeatedly extended with
another path vertex until it is terminated. At each path vertex, the path is terminated with a
certain probability using Russian roulette. Each path vertex yi is explicitly connected to a
random point z on a light source to form the complete light transport path y0 · · ·yiz from the
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Y
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Figure 2.3: Path tracing sample.

eye to the light source. These complete paths are called explicit paths. However, when the
path ’accidentally’ hits a light source at vertex yk, this path y0 · · ·yk also forms a valid light
transport path. Such paths are called implicit paths. Hence, light transport paths may be
generated as either an explicit or implicit path. For simplicity, we assume that light sources
do not reflect any light, so the path may be terminated whenever it hits a light source.

A path vertex must be diffuse for an explicit connection to make sense, because other-
wise the BSDF will be non-zero with zero probability. Therefore, path space is partitioned
in explicit and implicit paths, where explicit paths must be of the form E (S|D)∗DL while
implicit paths must be of the form E

(
L|(S|D)∗ SL

)
. All other explicit and implicit paths are

discarded. Note that a PT sample contains at most one explicit and one implicit path for
each path length. Hence, by further partitioning path space according to path length, it is
guaranteed that the sampler generates at most one valid light transport path per part.

When the PT sampler extends the partial path y0 · · ·yi with another vertex yi+1, an out-
going direction Ψi at yi is sampled per projected solid angle and the corresponding ray is
intersected with the scene to find the next path vertex yi+1. Hence, path vertices are sampled
per projected solid angle. To compute the sampling probability per unit area, the probability
is converted using the geometric term:

PA (yi→ yi+1) = Pσ⊥ (yi→ yi+1)G(yi↔ yi+1) (2.8)

For more details on converting probabilities per unit projected solid angle to probabili-
ties per unit area and back, see appendix B. Note that in practice, Pσ⊥ (yi→ yi+1) usu-
ally also depends on the incoming direction. To emphasize this, one could instead write
Pσ⊥ (yi−1→ yi→ yi+1). To keep things simple, we omitted this. It is however important
to keep in mind that the incoming direction is usually needed to calculate this probability.
We further assume that the inverse termination probability for Russian roulette is incorpo-
rated in the probability PA (yi→ yi+1) of sampling yi+1. Because the point z on the light
source and y0 on the eye are directly sampled per unit area, no further probability conver-
sions are required for these vertices. The probability that a sampler generates some explicit,

11



2.5 Importance sampling Unbiased Rendering

respectively implicit, path as part of a PT sample equals

P(y0 · · ·yiz) = PA (y0)
i−1

∏
j=0

PA (y j→ y j+1)PA (z)

P(y0 · · ·yk) = PA (y0)
k−1

∏
i=0

PA (yi→ yi+1)

(2.9)

For more details on generating and evaluating path tracing samples, see appendix D.

2.5 Importance sampling

A sampler may sample light transport paths according to any convenient probability density
function p, provided that f (X)

p(X) is finite whenever f (X) > 0. However, the probability density
function greatly influences the quality of the estimator. A good measure for quality is the
variance of an estimator, where smaller variance results in a better estimator. To reduce
variance in the estimator, p should resemble f as much as possible. To see why this is true,
assume that p equals f up to some normalization constant c, so that f (X)

p(X) = c for all X ∈Ω.
Then the estimator reduces to

F1 = E
[

f (X1)
p(X1)

]
= E [c] = c (2.10)

Hence, the estimator will have zero variance.
Sampling proportional to f is called importance sampling. In general it is not possible

to sample proportional to f without knowing f beforehand 1. It is however possible to
reduce the variance of the estimator by sampling according to an approximation of f . This
is usually done locally during path generation. At each path vertex xi, the importance of the
next path vertex xi+1 is proportional to the reflected radiance L(xi+1 → xi) fs(xi+1 → xi →
xi−1)G(xi↔ xi+1). This leads to two importance sampling strategies:

1. Try to locally estimate L(xi+1 → xi) or L(xi+1 → xi)G(xi↔ xi+1) and sample xi+1
accordingly

2. Sample xi+1 proportional to fs(xi+1→ xi→ xi−1)G(xi↔ xi+1)

The strategies are visualized in figure 2.4. The gray shape represents the local BSDF. In the
left image, the outgoing direction is sampled proportional to the BSDF, while in the right
image, the outgoing direction is sampled according to the estimated incoming radiance L.
Both strategies are used in the PT sampler from last section. Most radiance is expected to
come directly from light sources, so explicit connections are a form of importance sampling
according to L. The second method of importance sampling is used during path extension,
where the outgoing direction is usually chosen proportional to fs. Note that these strategies

1In section 2.8, the Metropolis-Hastings algorithm is used to generate a sequence of correlated samples
proportional to f .
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Figure 2.4: Importance sampling along to the local BSDF and towards the light source.

are very rough, as explicit connections only account for direct light while extensions only
account for local reflection.

Importance sampling is also combined with Russian roulette to terminate paths. During
sampling, the termination probability at path vertex xi is chosen proportional to the esti-
mated amount of incoming radiance that is absorbed. Usually, the absorption estimate is
based on the local BSDF.

Another related requirement for a good probability density function is that for any path
X∈Ω with p(X) > 0, f (X)

p(X) is bounded. If this property is not satisfied due to singularities in
f (X), the probability of sampling these singularities will be infinitesimally small. Hence,
these singularities will in practice not contribute to the estimate, causing the absence of
important light effects in the final rendering 2. For a PT sampler, it is enough to require that
during path extension at any vertex xi, it holds that fs(xi+1→xi→xi−1)

P
σ⊥ (xi→xi+1)

∈ [0,∞). As singularities
in the local BSDF are usually modeled using Dirac delta functions, this practically means
that Pσ⊥ must contain Dirac delta functions centered at the same outgoing directions as the
Dirac delta functions in the local BSDF.

When performing importance sampling according to fs, this restriction is already satis-
fied. Hence, singularities are a special case where importance sampling is not only desir-
able, but required to capture all light effects.

2.6 Multiple Importance Sampling

The PT sampler from last sections uses partitioning to select between two importance sam-
pling strategies for sampling the last path vertex. On paths with signature E(S|D)∗DL, the
last path vertex is sampled by making an explicit connection to the light source, assuming
that the light source geometry is a good approximation for incoming radiance. For all other
paths, the last path vertex is sampled according to the local BSDF, resulting in an implicit

2Light effects due to singularities are those effects caused by perfect reflection and refraction such as
caustics.
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light transport path. However, it is not always evident which importance sampling strategy
is most optimal in a certain situation. For highly glossy materials, sampling the last vertex
according to the local BSDF often results in less variance than when making an explicit
connection. This is because the glossy BSDF is highly irregular, but explicit connections
do not take the shape of the BSDF in consideration.

By dropping the path space partition restriction, multiple sampling techniques may be
combined to form more robust samplers. Multiple Importance Sampling (MIS) seeks to
combine different importance sampling strategies in one optimal but unbiased estimate [51].
A sampler may generate paths according to one of n sampling strategies, where pi(X) is the
probability of sampling path X using sampling strategy i. Per sampling strategy i, a sampler
generates ni paths Xi,1 · · ·Xi,ni . Hence, path Xi, j is sampled with probability pi(Xi, j). These
samples are then combined into a single estimate using

Ik =
n

∑
i=1

1
ni

ni

∑
j=1

wi(Xi, j)
f (Xi, j)
pi(Xi, j)

(2.11)

In this formulation, wi is a weight factor used in the combination. For this estimate to
be unbiased, it is enough that for each path X ∈ Ω with f (X) > 0, pi(X) > 0 whenever
wi(X) > 0. Furthermore, whenever f (X) > 0, the weight function must satisfy

n

∑
i=1

wi(X) = 1 (2.12)

In other words, there must be at least one strategy to sample each contributing path and
when some path may be sampled with multiple strategies, the weights for these strategies
must sum to one. A fairly straightforward weight function satisfying these conditions is

wi(X) =
ni pi(X)

∑
n
j=1 n j p j(X) (2.13)

This weight function is called the balance heuristic. Veach showed that the balance heuristic
is the best possible combination in the absence of further information [50]. In particular,
they proved that no other combination strategy can significantly improve over the balance
heuristic. The general form of the balance heuristic, called the power heuristic, is given by

wi(X) =
ni pi (X)β

∑
n
j=1 n j p j (X)β

(2.14)

2.7 BiDirectional Path Tracing

In the PT sampler, all but the last path vertex are sampled by tracing a path backwards from
the eye into the scene. This is not always the most effective sampling strategy. In scenes
with mostly indirect light, it is often hard to find valid paths by sampling backwards from
the eye. Sampling a part of the path forward, starting at a light source and tracing forward
into the scene, can solve this problem.
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Figure 2.5: Bidirectional path tracing sample.

This is exactly what the BiDirectional Path Tracing (BDPT) sampler does. BDPT was
independently developed by Veach and Lafortune [50, 33]. It samples an eye path and a
light path and connects these to form complete light transport paths. The eye path starts at
the eye and is traced backwards into the scene, like in the PT sampler. The light path starts
at a light source and is traced forward into the scene. Connecting the endpoints of any eye
and light path using an explicit connection results in a complete light transport path from
light source to eye.

Like the PT sampler, for efficiency, instead of generating a single path per sample, the
BDPT sampler generates a collection of correlated paths per sample. Figure 2.5 shows a
complete BDPT sample. When constructing a sample, an eye path and a light path are
sampled independently, wherafter all the vertices of the eye path are explicitly connected
to all the vertices of the light path to construct valid light transport paths. Each connection
results in a light transport path.

Let X ∈ Ω be a light transport path of length k with vertices x0 · · ·xk, that is part of a
BDPT sample. This path can be constructed using k + 1 different bidirectional sampling
strategies by connecting an eye path Ys = y0 · · ·ys of length s ≥ 0 with a light path Zt =
z1 . . .zt of length t ≥ 0, where k = s + t (yi = xi and zi = xk−i+1). Note that both the eye
and light path may be of length zero. In case of a zero length light path, the eye path is an
implicit path and should end at a light source. In case of an eye path of length 0, the light
path is directly connected to the eye. We will not deal with light paths directly hitting the
eye3. For convenience, we will leave the first vertex y0 on the eye path implicit in the rest
of our discussion of BDPT, as it is always sampled as part of the eye path anyway. Hence,
an eye path of length s contains the vertices Ys = y1 · · ·ys. When necessary, we will refer to
a complete light transport path sampled using an eye path of length s as Xs.

The probability of generating a (partial) path X′ using either forward or backward trac-
ing equals p(X′). The probability of bidirectionally generating a complete path X by con-
necting an eye path of length s with a light path of length t = k− s equals p̂s (X).

Each bidirectional sampling strategy represents a different importance sampling strat-
egy and has a different probability distribution over path space. Hence, by combining all

3A light path can only direclty hit the eye when a camera model with finite aperture lens is used. The
contribution of such paths is usually insignificant.
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sampled paths using MIS, the strengths of these different sampling strategies are combined
in a single unbiased estimator. By incorporating the termination probabilities into the path
sampling probabilities p(X′) and p̂s (X) (similar to the PT sampler), the number of samples
per strategy ni becomes 1. Applying the power heuristic to the BDPT sampler results in a
MIS weight function of

ws (X) =
p̂s (X)β

∑
k
i=0 p̂i (X)β

(2.15)

We will refer to the denominator of this equation as D(X) = ∑
k
i=0 p̂i (X)β.

Now let us turn to the computation of the probability p̂i (X) for any 0 ≤ i ≤ k. This
probability equals the probability of sampling all the individual vertices on the path. Each
vertex is either sampled as part of the eye path or the light path. In this case, the first i
vertices are sampled as part of the eye path Ys (s = i). The remaining t = k− s vertices are
sampled as part of the light path Zt . Therefore, the bidirectional sampling probability can be
expressed as the product of the sampling probabilities for the eye and light path separately:
p̂i (X) = p(Ys) p(Zt).

What is left is the computation of the sampling probabilities for the eye and light path.
These probabilities are similar to the sampling probability for paths in the PT sampler.

For some eye or light path X′ = x1 · · ·xk, the sampling probability p(X′) equals

p
(
X′
)

=
k−1

∏
i=0

PA (xi→ xi+1) (2.16)

In this equation, we use the special notation PA (x0→ x1) to indicate the probability of
sampling x1 per unit area. Using this special case keeps the overall notation clean. On an
eye path, PA (x0→ x1) is the probability of sampling the first eye vertex x1, depending on
the lens model used. On a light path, PA (x0→ x1) is simply the probability of sampling the
vertex x1 on a light source. In this case, x0 can be thought of as the virtual source of all light
in the scene.

Remember that the eye vertex y0 was left implicit. So, the real probability of sampling
Xs with bidirectional sampling strategy s equals PA (y0) p̂i (X). The MIS weights do not
change due to y0 as PA (y0)

β will appear in all probability terms and hence will be a common
factor in both the denominator and numerator of ws (X).

BDPT requires many correlated connection rays to be traced. It is possible to reduce
the number of connection rays by applying Russian roulette to the connections. Instead of
making all connections, each connection is made with a certain probability, based on the
contribution this connection would make to the estimator if it would succeed. By correcting
for this probability, the estimate remains unbiased. Note that this optimization is also a form
of importance sampling; Connections are sampled according to their estimated contribution.
The estimate is based on the assumption that the connection will actually succeed.

For more details on generating and evaluating BDPT samples, see appendix E.
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2.8 Metropolis sampling

As explained in section 2.5, perfect importance sampling requires sampling proportional to
the function f . We stated that this was not generally possible without knowing f before-
hand. However, in the context of unbiased rendering, f is known beforehand but because it
is so complex and irregular, it is hard to sample proportional to f . The Metropolis-Hastings
algorithm is capable of sampling proportional to any function as long as it can be evalu-
ated. The algorithm generates a sequence of samples X0 · · ·Xi · · · with pi : Ω→ R being
the probability density function for Xi. The sequence is constructed as a Markov chain, so
each sample only depends on its predecessor in the sequence. Xi+1 is constructed from Xi

by randomly mutating Xi according to some mutation strategy. The algorithm may use any
convenient mutation strategy, as long as it satisfies ergodicity. Some mutation strategies
are however more effective than others. In section 2.9, we will discuss specific mutation
strategies in the context of light transport. We will discuss ergodicity shortly. A mutation
strategy is described by its tentative transition function T (y|x), which is the probability
density function for constructing y as a mutation of x.

The desired sample distribution is obtained by accepting or rejecting proposed muta-
tions according to a carefully chosen acceptance probability. If a mutation is rejected the
next sample will remain the same as the current sample (Xi+1 = Xi). Let a(y|x) be the accep-
tance probability for accepting mutation y as Xi+1, given Xi = x. The acceptance probability
is chosen so that when pi ∝ f , so will pi+1. Hence, the equilibrium distribution for the sam-
ple distribution sequence p0 · · · pi · · · is proportional to f . This is achieved by letting a(y|x)
satisfy the detailed balance condition

f (y)T (x|y)a(x|y) = f (x)T (y|x)a(y|x) (2.17)

When the acceptance probability satisfies the detailed balance and the mutation strategy
satisfies ergodicity, the probability density sequence will converge to the desired equilib-
rium distribution. In order to reach the equilibrium distribution as quickly as possible, the
best strategy is to make the acceptance probability as large as possible. This results in the
following acceptance probability:

a(x|y) = min
(

1,
f (x)T (y|x)
f (y)T (x|y)

)
(2.18)

As mentioned earlier, ergodicity must be satisfied in order for the sequence to reach the
equilibrium distribution. Ergodicity means that the sequence converges to the same distri-
bution, no matter how X0 was chosen. In practice, it is sufficient that T (y|x) > 0 for any
x,y ∈ Ω with f (x) > 0 and f (y) > 0. In other words, all paths are reachable from all other
paths through a single mutation. This is to prevent the sequence from getting stuck in a part
of path space, unable to reach another part.

The sample sequence produced by the Metropolis algorithm is used for perfect im-
portance sampling, proportional to f . Each sample contributes f (Xi)

pi(Xi)
to the Monte Carlo

estimator. As pi is assumed to be proportional to f , f (Xi)
pi(Xi)

= c, however, it is usually not
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possible to analytically determine c. Integrating both sides of the equation results in

c =
∫

Ω

f (x)dΩ(x) (2.19)

This equation can be used to estimate c. In the context of unbiased rendering, c is usually
estimated using a small number of PT or BDPT samples.

Note that if X0 is not sampled according to f , that is p0 6∝ f , then Xi will have the desired
distribution only in the limit as i→∞. The bias introduced by the difference between pi and
f
c is called startup bias and will result in bias in the Monte Carlo estimate. The startup bias
is often reduced by discarding the first k samples, but it is difficult to choose an appropriate
k. In section 2.10, we discuss an approach to eliminate startup bias altogether.

2.9 Metropolis Light Transport

The Metropolis algorithm can be applied to the light transport problem to reduce the vari-
ance in the Monte Carlo estimate for each pixel. The Metropolis algorithm is used to gen-
erate a sequence of light transport paths, sampling proportional to some function f . In the
context of rendering, the Metropolis algorithm is usually not directly applied to estimate the
measurement equation of an individual pixel. Instead, samples are generated proportional
to the combined measurement contribution function for all m pixel sensors

f (X) =
m

∑
j=1

f j (X) (2.20)

These samples are then shared to estimate the individual integrals I j. This has several ad-
vantages; First of all, because the measurement functions for nearby pixels are often very
similar, applying small mutations to hard-to-find paths often results in similar paths that
contribute to nearby pixels. Second, as there is only one Metropolis sequence instead of m,
the impact of startup bias is reduced and the normalization constant c has to be estimated
only once. A disadvantage is that the number of samples contributing to some pixel j be-
comes proportional to I j. When there are large variations in the brightness over the image
plane, dark areas in the image become relatively undersampled compared to brighter areas.

When estimating multiple integrals at once, the Metropolis Monte Carlo estimators may
be further improved by not only letting accepted mutations contribute, but the rejected mu-
tations as well. Assume Xi = X and let Y be the proposed mutation. Then, Y is accepted
as Xi+1 with probability a(Y|X) and X is accepted (Y is rejected) as Xi+1 with probabil-
ity 1− a(Y|X). Hence, the expected contributions of X and Y equal c(1−a(Y|X)) resp.
ca(Y|X). Instead of only letting Xi+1 contribute c to the estimates, it is possible to let X and
Y both contribute their expected contributions instead. Because different paths may con-
tribute to different pixels, the average number of samples contributing to a pixel increases,
especially for relatively dark pixels having on average lower acceptance probabilities.

Algorithm 1 shows a general Metropolis Light Transport (MLT) sampler. The sampler
generates a sequence of N samples using the Metropolis-Hastings algorithm. Of these, the
first k are discarded to eliminate startup bias. The algorithm’s initial path X and estimated
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normalization constant c are passed as parameters to the sampler. For an estimator with low
bias, N should be significantly large.

Algorithm 1 : Metropolis(X,N,k,c)
X0← X
for i = 1 to N + k do

Y←mutate(Xi−1) ∝ T (Y|Xi−1)
a← a(Y|Xi−1)
if i≥ k then

contribute a c
N to image along Xi−1

contribute (1−a) c
N to image along Y

end if
if a≥U(0,1) then

Xi← Y
else

Xi← Xi−1
end if

end for

What is left to discuss is the mutation strategy used to construct the sample sequence.
As mentioned earlier, the mutation strategy should satisfy ergodicity. This is achieved by
sampling a fresh path using either PT or BDPT with non-zero probability. For the remainder
of mutations, the path vertices are perturbed in order to locally explore path space. Veach
proposed two simple perturbation methods, the lens and caustic mutations [52]. Caustic mu-
tations are applied to paths of the form EDS(S|D)∗L, these paths are responsible for caustic
effects, hence the name. Figure 2.8 shows an example of a caustic mutation. Lens mutations
are applied to all remaining paths4. Figure 2.6 shows an example of a lens mutation. Both
mutation types only perturb the first i vertices of the path x0 · · ·xk with 0 < i ≤ k. When
i < k, the mutated path is formed by concatenating the perturbed subpath x′0 · · ·x′i and the
original subpath xi+1 · · ·xk to form the complete path x′0 · · ·x′ixi+1 · · ·xk. If i = k, then x′0 · · ·x′i
already forms a complete path. The signature and length of the path are unaffected by these
mutations. When the signature of the path does change during mutation, the mutation is
immediately rejected.

Lens mutation: The lens mutation creates a new path from an existing path, beginning
at the eye. The mutation is started by perturbing the outgoing eye direction x0→ x1, which
usually means the mutation will contribute to a different pixel. The new eye subpath is
propagated backwards through the same number of specular bounces as the original path,
until the first diffuse vertex x j is reached. If the next vertex x j+1 on the original path is
diffuse, the mutated vertex x′j is explicitly connected to x j+1 to form the complete mutation
x′0 · · ·x′jx j+1 · · ·xk

5. However, if the next vertex x j+1 is specular, the outgoing direction
4Veach differentiates between lens and multi-chain perturbations, we do not make this distinction [52].
5For an explicit connection to make sense, the two vertices involved both need to be diffuse. Therefore, the

next vertex must be diffuse.
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x j → x j+1 is perturbed by a small angle and the eye subpath is further extended through
another chain of specular vertices until the next diffuse vertex is reached. This process is
repeated until either two consecutive diffuse vertices are connected, or the light source is
reached. Figure 2.6 shows the mutation of a path of the form ESDSDL. First, the outgoing
direction from the eye is perturbed. The mutation is then extended through the first specular
bounce. The outgoing direction of the first diffuse vertex is also perturbed and the mutation
is again extended through another specular bounce. Finally, the path is explicitly connected
to the light source to complete the mutation.

D

S
L

E

S

Y
Z

D

Figure 2.6: Lens mutation of a path of the form ESDSDL. The mutation starts at the eye.
Further path vertices are mutated backwards until an explicit connection can be made.

Lai Lens mutation: Lai proposed an alternative lens mutation that requires only perturb-
ing the outgoing eye direction x0 → x1 [57]. Just like the original lens mutation, the new
eye subpath is propagated backwards through the same number of specular bounces as the
original path, until the first diffuse vertex x j is reached. However, if the next vertex x j+1
is specular, instead of perturbing the outgoing direction x j → x j+1 as in the original lens
mutation, an explicit connection is made to the specular vertex x j+1 on the original path.
If this connection succeeds, the mutation is extended through the remaining specular ver-
tices until the next diffuse vertex is reached. Again, this process is repeated until either two
consecutive diffuse vertices are connected, or the light source is reached. Figure 2.7 shows
the mutation of a path of the form ESDSDL. First, the outgoing direction from the eye
is perturbed. The mutation is then extended through the first specular bounce. Instead of
perturbing the outgoing direction, the first diffuse vertex is connected to the next specular
vertex and the mutation is again extended through another specular bounce. Finally, the
path is explicitly connected to the light source to complete the mutation.

Caustic mutation: Caustic mutations are very similar to lens mutations, but perturb the
path forward towards the eye, instead of starting at the eye and working backwards to the
light source. The caustic perturbation creates a new path from an existing path, beginning
at the second diffuse vertex xi from the eye. The mutation starts by perturbing the outgoing
direction xi→ xi−1. The new subpath is propagated forwards through i−2 specular bounces
until the first diffuse vertex x1 is reached. This vertex is then explicitly connected to the
eye vertex x0 to complete the mutation. Figure 2.8 shows the mutation of a path of the
form EDSDL. The mutation starts by mutating the outgoing direction at the second diffuse
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Figure 2.7: Lai Lens mutation of a path of the form ESDSDL. The mutation starts at the
eye. Further path vertices are mutated backwards until an explicit connection can be made.
Diffuse vertices are connected directly to specular vertices while extending the path.

vertex. The mutation is then extended through one specular bounce. Finally, the first diffuse
vertex is explicitly connected to the eye to complete the mutation.
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Figure 2.8: Caustic mutation of a path of the form EDSDL. The mutation starts at the
second diffuse vertex from the eye. All preceding vertices are perturbed forward and an
explicit connection to the eye is made.

When using more advanced camera models with a finite aperture lens, both mutations
should also perturb the eye vertex x0 itself. For simple models such as the pinhole camera,
there is only one valid x0, so perturbing x0 is not necessary. Aside from these perturbation
mutations, Veach also proposed mutations that substitute any subpath by a completely new
subpath of possibly different length and signature, using bidirectional mutations [52]. We
will not discuss these mutations here, and direct the interested reader to the original paper on
Metropolis light transport [52]. Because the original paper is found to be difficult to under-
stand by many people trying to implement the Metropolis Light Transport algorithm, Cline
presented a comprehensive tutorial on Metropolis Light Transport and its implementation
[10].

For more details on generating lens and caustic mutations and evaluating their accep-
tance probability, see appendix F.
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2.10 Energy Redistribution Path Tracing

The Energy Redistribution Path Tracing (ERPT) algorithm as proposed by Cline, is closely
related to the MLT algorithm from last section [11]. However, ERPT does not suffer from
startup bias. Also, ERPT does not require an accurate and unbiased estimate of the normal-
ization constant c, although it can increase performance. Furthermore, the mutation strategy
used in ERPT does not need to satisfy the ergodicity constraint.

MLT suffers from startup bias because the initial path X0 for the mutation chain is not
sampled proportional to f . The ERPT algorithm solves this problem and does sample X0
proportional to f . This is done by sampling multiple mutation chains per sample, all with
equal length N. Path tracing is used to generate the initial path X0 for these mutation chains.
Using PT, a path X0 is sampled with probability p(X0), thus the probability of having X0
as the initial path of a chain is proportional to p(X0). However, this number should be
proportional to f (X0). Hence, the number of mutation chains starting at X0 is off by a
factor f (X0)

p(X0)
. This is resolved by starting multiple chains per initial path X0. When on

average, the number of chains for X0 is proportional to f (X0)
p(X0)

, the initial mutation chain
paths X0 are sampled proportional to f and startup bias is eliminated. This is realized by
making the number of mutation chains numChains(X0) per path X0 equal to:

numChains(X0) =
⌊

U(0,1)+
1

N× ed

f (X0)
p(X0)

⌋
(2.21)

In this equation, U(0,1) is a uniform random number between 0 and 1 and ed is the amount
of energy that is contributed to the image by each mutation in a chain, also called the algo-
rithm’s energy quantum.

To see why ERPT does not require an unbiased estimate of c, let us compute the ex-
pected number of contributions to the image plane for MLT and ERPT. For MLT, the
total number of contributions to the image plane always equals N. For an ERPT sam-
ple with initial path X0, the average number of contributions equals 1

ed

f (X0)
p(X0)

. Therefore,

the expected number of contributions per ERPT sample equals
∫

Ω

1
ed

f (X)
p(X) p(X)dΩ(X) =

1
ed

∫
Ω

f (X)dΩ(X) = c
ed

. Compared to MLT, the expected number of contributions per ERPT
sample is off by a factor of c

ed

1
N . So, to keep the ERPT estimator unbiased, instead of con-

tributing c
N per mutation, as in MLT, an ERPT mutation should contribute c

N
ed
c

N
1 = ed .

Hence, the ERPT algorithm does not require an explicit estimate of c.
The energy quantum ed may be chosen freely without introducing bias. However, it does

influence its performance. The number of mutation chains per ERPT sample is inversely
proportional to both N and ed . The expected number M of mutation chains per ERPT sample
can be regulated by using ed = c

N×M . This again requires an estimate of c. However, this
estimate does not need to be very accurate and may even be biased, as it only influences the
performance of the ERPT algorithm. In practice, the ERPT algorithm is not very sensitive
to the value of ed .

In ERPT, generating mutation chains for a PT sample is called energy redistribution.
Algorithm 2 shows the energy redistribution part of an ERPT sampler. As input, it takes an
initial PT path X0, the mutation chain length N and the energy quantum ed .
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Algorithm 2 : EnergyRedistribution(X0,N,ed)

numChains←
⌊
U(0,1)+ f (X0)

p(X0)
1

N×ed

⌋
for i = 1 to numChains do

Y← X0
for j = 1 to N do

Z←mutate(Y)
a← a(Y→ Z)
deposit aed energy at Z
deposit (1−a)ed energy at Y
if a≥U(0,1) then

Y← Z
end if

end for
end for

Finally, a useful property of the ERPT algorithm is that its mutation strategy does not
necessarily need to satisfy ergodicity for the outcome to be unbiased. The reason is that mu-
tation chains already have their initial samples distributed proportional to f . Note however
that although the outcome will remain unbiased when using only a few ERPT samples, the
error may become unacceptably large. We will discuss this in more detail in section 9.2.2.
Using many ERPT samples with relatively short mutation chains solves this problem.

Although N should not be chosen too large, N should not be chosen too small either. In
ERPT the value of N determines the amount of energy redistribution. For effective energy
redistribution, N should be reasonably large. If N is too small, ERPT effectively deteriorates
into a quantized PT algorithm. To see why, let us look at the extreme case without any
energy redistribution; each mutation chain only contains its initial sample. The number of
chains per initial sample is proportional to f , so each sample will contribute on average
ed

⌊
U(0,1)+ 1

ed

f (X0)
p(X0)

⌋
= f (X0)

p(X0)
. All this energy is contributed to a single pixel; the pixel

corresponding to X0. Hence, because each chain contributes a single energy quantum, the
remaining algorithm is a quantized PT algorithm, performing worse than normal PT.

The ERPT algorithm presented in [11] uses only the lens and caustic mutation types
from the MLT algorithm and an N in the order of 100. Note that because lens and caustic
mutations do not change the length or signature of a path, all paths in a mutation chain have
the same length and signature.

23





Chapter 3

GPGPU

3.1 Introduction

Modern General Purpose GPU’s (GPGPU) are many-core streaming processors. A uniform
streaming processor takes a data stream as input, applies a series of operations (a kernel)
to all elements in the data stream and produces an output data stream. Usually, all data
elements are processed independently, without explicit communication or synchronization.
This allows the streaming processor to apply the kernel to multiple data elements in parallel.

In this work, we will focus on the CUDA parallel computing architecture developed
by NVIDIA [13]. Other frameworks for GPGPU programming are OpenCL [21], Mi-
crosofts DirectCompute [38], and ATI’s Stream [3]. On CUDA GPU’s, the requirement
of independence is less strict and various forms of explicit and implicit communication
and synchronization are available. This gives room for implementing a broader class of
almost-streaming algorithms on the GPU and further improving the performance of stream-
ing algorithms. Stream elements are arranged in a thread hierarchy, where each level in the
hierarchy provides different forms of communication, memory access and synchronization.

In this chapter, we will discuss the CUDA thread hierarchy and corresponding memory
hierarchy. We will further explain the forms of synchronization available. In our discussion
we will mainly focus on how to achieve high parallelism and memory bandwidth, which
translates to high overall performance. Finally, we will discuss the parallel scan, a very
useful parallel processing primitive [47].

3.2 Thread Hierarchy

In CUDA, when a kernel is applied to a stream, a single CUDA thread is executed for each
stream element. All threads run in parallel. These threads are arranged in a three-level
thread hierarchy (See figure 3.1). At the highest level, the threads are arranged in a large
1,2 or 3-dimensional grid. At the second level, the grid is subdivided in equal sized blocks
of threads. These blocks are further subdivided in warps, each consisting of 32 threads.
The grid, blocks and threads are exposed to the programmer through the CUDA API. The
dimensions of the grid and blocks are explicitly specified by the programmer. Warps are
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not explicitly exposed to the programmer and blocks are implicitly subdivided in warps of
32 threads each. Warps however have important features and to achieve high performance,
it is important to take these into account.

Grid

Block
Warp

Warp

Warp

Thread

Block

Block

Block

Block

Block Block Block

Block Block Block

Local memory

Shared memory

Global memory

Figure 3.1: CUDA thread hierarchy.

The size of the grid may be chosen freely. The maximum size of a block is limited,
depending on the kernel and CUDA compute capability. Each block is mapped to a single
Streaming Multiprocessor (SM) on the GPU. All warps in the block are executed on this
SM. Modern GPU’s have multiple SM’s. The grid blocks are distributed over the available
SM’s. For maximum parallelism and efficient load balancing, the grid must consist of a
reasonable amount of blocks, enough to fully utilize all SM’s on the GPU.

Multiple warps are executed concurrently on a single SM. The warps share the SM
using a form of hyper threading. An SM handles one warp at a time, executing all threads
in the warp in parallel1. Whenever the warp is suspended, for example awaiting a memory
transfer, the SM resumes the next warp. This method is used to hide memory latencies. To
effectively hide all latencies, it is important to execute as many concurrent warps per SM as
possible.

SIMT

Each SM on the GPU consists of multiple processors sharing one instruction unit (see figure
3.2). Each thread in a warp maps to one of these processors. Therefore, threads in a single
warp execute in SIMT (Single Instruction, Multiple Threads). SIMT is an implicit form of
SIMD, handled by the hardware. All threads in the warp execute one common instruction
at a time. If the control flow of threads in a warp diverges due to data-dependent conditional
branching, the hardware serially executes each branch path taken, disabling threads that are
not on the path. When code paths eventually converge again, the threads are again executed
in parallel. Full efficiency is realized when all threads in the warp follow the same code
path and agree on the next instruction, so that all threads are executed in parallel. Because

1On older GPU models, the 32 threads are executed in blocks of 8 threads running in parallel.
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diverging code paths are executed serially, efficiency is decreased whenever threads follow
a different code path, reducing parallelism. To realize high parallelism, it is vital to keep
the number of different code paths taken by threads in a warp to a minimum.

3.3 Memory Hierarchy

Figure 3.1 also shows the CUDA memory hierarchy. Each thread has a private local mem-
ory, containing registers. Each thread block has a shared memory visible to all threads of the
block. Finally, all threads have access to the same global memory. Shared memory is used
for communication between threads in a block and global memory may be used to com-
municate between threads in different blocks (see section 3.4). Global memory is a large
memory storage with relatively low bandwidth and high latency. Local thread memory and
shared memory are small memory stores with relatively high bandwidth and low latency.
Figure 3.2 shows where these memory banks are located on the device.

Each SM has its own on-chip local memory and shared memory banks. Besides these,
each SM also possesses a small L1-cache for caching global memory2. The shared memory
and L1-cache share the same memory bank. The total amount of local memory and shared
memory per SM is limited, depending on the device. These resources must be divided
between all blocks concurrently executing on an SM. Each thread requires an amount of
local memory, depending on the kernel. This restricts the maximum number of warps in
a block. Furthermore, each block requires an amount of shared memory and L1-cache,
restricting the maximum number of blocks concurrently running on an SM. As the number
of warps concurrently running on an SM must be maximized to hide memory latency, shared
memory and local memory usage per kernel should be minimized. For more details on block
sizes and their relation to available local and shared memory, see [13, 12].

Besides the L1-cache, figure 3.2 also shows an L2-cache. The L2-cache is shared by all
SM’s on the device. All global memory access is loaded through the L2-cache. On devices
with CUDA compute capability 1.x, only explicitly specified read-only memory (containing
textures and constants) was cached in the L2 cache, but on more recent devices with at least
compute capability 2.0, all memory access, including memory writes, are cached in the L2
cache[14]. Whenever the cache is unable to serve a memory request, it is served by the
device memory.

Coalesced memory access

Device memory handles requests serially, serving one memory transaction at a time. For
maximum memory bandwidth, memory requests should be served in the least number of
memory transactions. Simultaneous memory requests by multiple threads in a warp can
be coalesced into one or a few memory transactions. For this, a warp is subdivided in two
half-warps of 16 threads each3. When the memory access pattern of threads in a half-warp
satisfies certain conditions, the memory requests can be coalesced. For older devices with

2L1-caches are only available on devices with at least compute capability 2.0.
3On devices with at least compute capability 2.0, a warp is no longer subdivided in two half-warps. Instead,

all 32 threads are considered together.
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Figure 3.2: CUDA device architecture.

compute capability 1.0 and 1.1, these conditions are much stricter than for newer devices.
We will first discuss the more strict requirements. Figure 3.3 shows a coalesced memory
transaction for devices of compute capability 1.0 or 1.1.
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Figure 3.3: Coalesced memory transaction on device with compute capability 1.0 or 1.1.
All memory is served in 1 memory transfer.

For memory requests to be coalesced on devices with compute capability 1.0 or 1.1, the
threads in the half warp must all access either 4-byte, 8-byte or 16-byte words. Furthermore,
all 16 words must lie in the same memory segment of 16 times the word size and equal sized
memory alignment. Finally, all threads must access the words in sequence, that is, the k’th
thread in the half warp must access the k’th word in the memory segment. These conditions
must be met by all active threads in the half warp. Any threads that are temporarily disabled
by the hardware due to SIMT are not considered and cannot violate the conditions. If all
conditions are met, the whole memory segment is served in coalesced memory transfers
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(1 transaction for 4 and 8 byte words, 2 transfers for 16 byte words). Note that when the
k’th thread is disabled, the k’th word is still loaded. This reduces the effective bandwidth.
The effective bandwidth is the amount of transfered memory per second that was actually
requested by active threads. When one of the conditions for coalesced memory access
is not met, one memory transaction is issued for each thread requesting memory, which
significantly reduces memory bandwidth. So, to reach high effective bandwidth, all memory
access should be coalesced and all threads in a half-warp should participate in the memory
request.

On devices with compute capability 1.2 or higher, the requirements for coalesced mem-
ory access are less strict. Figure 3.4 shows a coalesced memory transaction on such a
device. On these devices, memory requests are served with the least amount of transfers
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Figure 3.4: Coalesced memory transaction on device with compute capability 1.2. All
memory is served in 3 memory transfers.

possible. Threads in the half-warp may have any memory access pattern. All memory re-
quests to any memory segment are coalesced in a single memory transaction. So, when m
different memory segments are addressed, m memory transactions will be issued (2m if the
word size is 16-byte). In figure 3.4, 3 memory segments are addressed with a word size of
4 bytes, so memory access is served in 3 memory transactions. So, to maximize memory
bandwidth, threads in a half-warp should try to minimize the number of different memory
segments addressed during a memory request. Unused words due to disabled threads may
still be read by the hardware, reducing effective memory bandwidth. To further reduce this
waste of bandwidth, the hardware issues the smallest memory transaction that contains all
requested words in a memory segment (as demonstrated in figure 3.4).

For maximum shared memory bandwidth, shared memory requests by threads in a half-
warp should also adhere to certain access patterns to prevent bank conflicts. These patterns
are however less strict and the performance degradation is much less severe compared to
non-coalesced global memory access. For more information on coalesced memory access
and shared memory bank conflicts, the reader should consult [13].

System memory

In figure 3.2, device memory is attached to system memory via the PCIe (PCI Express) bus.
Whenever the CPU and GPU are working together, they can communicate by transferring
memory from system memory to device memory and back over the PCIe bus. Note that
PCIe bandwidth is usually not symmetrical. Transferring from system memory to device
memory is significantly faster than the other way around. For maximum PCIe bandwidth,
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memory should be transfered in large chunks at a time. When system memory is allocated
in page-locked memory, PCIe memory transactions can be executed concurrent with CPU
and GPU kernel execution. For maximum GPU utilization, it is important to perform the
GPU kernel execution and memory transaction concurrently whenever possible.

3.4 Synchronization and Communication

CUDA supplies different forms of synchronization and communication between threads in
the thread hierarchy. We will first discuss thread synchronization.

Synchronization

At warp level, all threads run in lock-step due to SIMT. Therefore, threads in a warp are
implicitly synchronized. At block level, threads in a block can be explicitly synchronized
using special synchronization barriers. As all threads in a warp are already synchronized,
when a barrier is issued the hardware only synchronizes all warps in the block [56]. Syn-
chronization between threads in different blocks is not possible because CUDA gives no
guarantees on the order in which blocks are scheduled for execution and which blocks will
be concurrently active on the GPU. Finally, the host system can execute concurrently with
the GPU and may synchronize with the GPU by awaiting the completion of kernel execu-
tion. CUDA does not provide mechanisms to synchronize the GPU with the host system.

Communication

There are three forms of communication between threads: at warp level, at block level and
at grid level. On devices with compute capability 2.0, CUDA supplies voting primitives at
warp level, used to make all threads in a warp agree on something. Threads in the same
block may communicate through shared memory. When threads in a warp all write the
same shared memory address, CUDA write semantics guarantee that one of these writes
will succeed, without specifying which. This mechanism can be used to implement some
simple voting primitives on older devices.

Finally, all threads can communicate through global memory, regardless of the blocks
they belong to. On devices with compute capability 1.1 and higher, global memory can
be modified through atomic instructions. Atomic instructions accessing the same memory
address (or any address in the same cache-line) collide and must be serialized, reducing
parallelism. Atomic memory access without collisions is almost as fast as normal non-
coalesced memory access. So, for maximum performance, atomics should be used scarcely
and should address different cache lines to reduce collisions.

3.5 Parallel scan

In this section, we will discuss the parallel scan as an important parallel programming prim-
itive. A scan computes the partial prefix sums s0 = ∑

0
i=0 xi,s1 = ∑

1
i=0 xi, · · · ,sn−1 = ∑

n−1
i=0 xi
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Algorithm 3 : ParallelScan(x0, · · · ,xn−1)
for i = 0 to n−1 in parallel do

si← xi

end for
for i = 0 to dlog2(n)e−1 do

for j = 0 to n−1 in parallel do
if j ≥ 2i then

s j← s j + s j−2i

end if
end for

end for

over a sequence of numbers x0 · · ·xn−1. A parallel scan computes these prefix sums in par-
allel. Algorithm 3 shows the general parallel scan algorithm. Efficient CUDA implementa-
tions of this algorithm are available for computing the prefix sum over all threads in a warp,
block or grid, where thread i delivers xi and wants to compute si [47]. The parallel scan
over all threads in the grid requires the execution of multiple kernels, however the parallel
scan on warp and block level only require the execution of a single kernel and can easily
be embedded within more complex kernels as an algorithmic step. Sengupta showed that
the parallel scan can be used to implement several parallel algorithms on the GPU, such as
parallel sorting [47]. In this work, the parallel scan is used for compaction.

During compaction, each thread wants to output xi elements in an output stream. The
parallel scan is used to uniquely determine the position in the output stream where each
thread may store its output elements. After applying the parallel prefix sum, si equals the
total number of output elements for all threads preceding thread i, itself included. So, by
storing the xi elements at positions si− xi to si−1 in the output stream, all output elements
will be tightly packed in the output stream.

Stream compaction can be very useful when each thread generates at most n elements
for some small n, usually 1. By using compaction, the output stream can by tightly packed,
removing any inactive elements from the output stream. This output stream may then serve
as the input stream for another kernel. See section 7.4 for an application of stream com-
paction to ray tracing.
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Chapter 4

Related Work

In recent years, much research has been targeted at improving unbiased Monte Carlo ren-
dering methods and implementing efficient ray traversal algorithms on the GPU. In this
chapter, we will give a short overview of these developments and the most relevant results.

4.1 GPU ray tracing

In this section, we will give an overview of the most important research, targeted at ray
traversal and unbiased rendering on the GPU.

4.1.1 Ray traversal

Since the introduction of GPGPU programming, many researchers have attempted to imple-
ment efficient ray traversal algorithms on the GPU. Of these, Purcell was the first to publish
an efficient GPU traversal algorithm [45]. His algorithm ran in multiple passes and used
a uniform grid as underlaying spatial structure. Because uniform grids are not well suited
to handle non-uniform geometry, several researchers proposed traversal algorithms using
a KD-tree as spatial structure. Foley proposed two stackless multi-pass KD-tree traversal
algorithms, called kd-restart and kd-backtrack [19]. Horn improved the work of Foley and
implemented the kd-restart algorithm as a single-pass algorithm [27]. Popov proposed an
alternate stackless KD-tree traversal algorithm using links between adjacent tree nodes to
steer traversal [44].

The introduction of NVidia’s GPGPU framework CUDA allowed for the implementa-
tion of efficient stack based GPU traversal algorithms. Guenther proposed a packet traversal
algorithm, using the Bounding Volume Hierarchy (BVH) as a spatial data structure [22]. In
the algorithm, all rays in the packet share a single stack. For reasonable efficiency, all rays
in a packet should have a similar origin and direction, called ray coherence. Aila elabo-
rately studied the SIMT efficiency of stack based BVH traversal on the GPU and improved
the efficiency through the use of persistent GPU threads [1]. Garanzha proposed a stack-
less breadth-first packet traversal algorithm. The algorithm traverses packet frusta through
a BVH to locate ray-leaf intersections. The rays are then tested against all triangles in these
leafs [20].
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All packet traversal algorithms require packets of reasonably coherent rays in order to
achieve high performance [41]. Garanzha proposed to construct coherent ray packets on the
GPU by spatially sorting the rays and grouping them into packets [20]. Aila found that even
though the bvh traversal algorithm does not use packets, it still benefits significantly from
ray coherence. When the rays traced by different threads in a GPU warp are relatively co-
herent, SIMT efficiency is increased and the GPU caches become more effective, increasing
traversal performance [1].

Several GPU algorithms are developed to construct spatial structures. The most notable
of these are the KD-tree construction algorithm by Zhou [59] and the BVH-tree construction
algorithm by Lauterbach [35].

4.1.2 Unbiased GPU rendering

Although a lot of research has been dedicated to efficient ray traversal algorithms on the
GPU, relatively little research has been targeted at the development of complete unbiased
rendering solutions on the GPU. Novak proposed a GPU path tracer with high SIMT effi-
ciency through path regeneration [40]. In the path tracing method, paths are stochastically
terminated causing varying path lengths. This results in gaps in the path tracing sampler
stream, reducing SIMT efficiency. By immediately regenerating terminated paths, Novak
keeps the average SIMT efficiency high. For an unbiased result, his method requires a cool
down period in which all remaining paths are completed while no new paths are regener-
ated. During this cool down period, SIMT efficiency decreases. Novak also presents the
first GPU implementation of a BDPT using path regeneration.

For a long time, the impact of shading on the overall performance of rendering was
deemed insignificant (5%) compared to ray traversal (95%) [55]. However, due to the in-
crease in ray traversal performance and the use of more complex materials, shading often
takes up a significant part of the method’s computations. Hoberock proposed a deferred
shading method to increase shading SIMT efficiency in a GPU path tracer. By sorting the
PT samplers based on the shader they require next, shading efficiency increases [26]. This
method is especially useful for complex and procedural materials.

NVidia provided a real time ray tracing engine based on the CUDA framework, called
OptiX [37]. OptiX delivers a flexible framework for GPU ray tracing, allowing for user
defined programmable intersection routines and shader models. Although highly flexible,
the performance of OptiX is relatively low for divergent rays. This makes it less suitable for
unbiased rendering methods such as path tracing.

4.1.3 Hybrid architecture

Besides complete GPU rendering solutions, several attempts have been made to utilize the
GPU’s computational resources alongside conventional CPU’s in a hybrid renderer. Ini-
tially, these algorithms relied on the CPU for ray generation, traversal and shading, while
the GPU was used as a ray-triangle intersection test co-processor. Cassagnabere presented
such an architecture, balancing the work over all available GPU’s and CPU’s in the system
[8]. After the introduction of efficient ray traversal on the GPU, ray tracing and shading
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could be performed on either the GPU or CPU, allowing for easier work balancing over
available system resources. Budge presented an out-of-core path tracing renderer having
implemented all but path generation, propagation and termination on both the GPU and
CPU. The rendering tasks are efficiently balanced over all available CPU and GPU re-
sources in the system [7]. His method focused on rendering models that do not completely
fit in system memory.

4.2 Unbiased rendering

Most of the important methods concerning unbiased rendering we already discussed in
chapter 2. In this section, we will discuss some important related research on unbiased
rendering using Monte Carlo estimates.

4.2.1 Variance reduction

After Kajiya introduced the rendering equation and used Monte Carlo Markov chains to
estimate its value [30], a lot of research has been targeted at reducing the variance and
improving the performance of such estimators. We discussed the most important variance
reduction techniques in chapter 2. In this section we will discuss some related methods,
not discussed in chapter 2. Jensen proposed an alternative importance sampling method,
based on photon mapping. First, the incoming radiance on all surface points is approxi-
mated by casting photons into the scene and storing the photons into a photon map. Then,
during path tracing, the scattering direction is sampled according to the incoming radiance
approximation from the photon map [28]. Because the photon map is assumed to be a good
approximation for the incoming radiance, this method should reduce the variance in the
estimator. Bekaert proposed to accelerate path tracing by combining multiple PT samples
through nearby screen pixels, allowing paths to contribute to multiple pixels. This method
increases the sample speed at the cost of extra correlation between screen pixels [5]. Ki-
taoka introduced the replica exchange light transport method. RELT combines multiple
sampling methods with different distributions. A sequence of path is sampled from each
distribution as a stationary distribution using the Markov chain Monte Carlo method. All
path samples are combined using MIS [31]. Wächter showed how overall variance of the
Monte Carlo estimator can be reduced by using stratified quasi random numbers to generate
samples [53].

4.2.2 Mutation strategies

Since the introduction of Metropolis Light Transport [50], several researchers have tried
to improve and simplify the Metropolis algorithm. One important improvement, the ERPT
algorithm [11], has already been discussed in chapter 2. In this section we will discuss some
variations, and alternate mutation strategies.

Lai and Fan used the population Monte Carlo framework to adapt the rendering method
based on information gathered so far during sampling. They applied the method to the
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ERPT rendering algorithm to adapt the perturbation sizes for mutations, based on the ac-
ceptance rate of mutations [58, 18]. Liris proposed an alternative mutation strategy, based
on Multiple-Try Metropolis sampling. Instead of generating a single mutation as a pro-
posed next sample, the method generates a collection of mutations and selects one. This
mutation is accepted according to a modified acceptance, resulting in an increased average
acceptance probability. The collection of mutations are usually highly coherent, allowing
for packet tracing and increased ray traversal performance [46].

The bidirectional mutation strategy as presented by Veach [50] is generally found to
be difficult to understand and implement in practice. Kelemen proposed a much simpler
mutation strategy. Instead of mutating the path in path space, the mutation works on the
unit hypercube of pseudo-random numbers from which the sample was constructed. He
shows that because fixed perturbation sizes in pseudo-random space corresponds to varying
perturbation sizes in path space, based on importance sampling, this method increases the
average acceptance probability [31].

Pauly showed how to render participating media by modifying Veach’s mutation strat-
egy [43].
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Chapter 5

The Problem Statement

In this thesis we are addressing the following problem: How can we adapt unbiased physi-
cally based rendering algorithms to run efficiently on the GPU? In this chapter, we will fur-
ther elaborate on the problem, before actually addressing its solution in subsequent chapter.

To address the problem we must first specify what it means for a GPU implementation
to run efficiently on the GPU. In chapter 3 we saw that for an implementation to fully utilize
all GPU resources, it must take the GPU thread and memory architecture into account. In
particular, for a GPU implementation to be efficient, it must adhere to three basic strategies
[12]:

• Maximizing parallel execution

If the implementation does not expose enough parallelism, the GPU will not have
enough work, preventing the work from being evenly distributed over all available
computation resources. An efficient implementation exposes enough parallelism to
fill all GPU resources.

• Optimizing memory usage to achieve maximum effective memory bandwidth

When memory access is not coalesced, memory bandwidth is wasted and the effective
memory bandwidth drops. An efficient implementation uses memory access patterns
that allow for coalesced memory access, increasing effective memory bandwidth

• Optimizing control flow to achieve maximum SIMT efficiency

If the SIMT efficiency of the implementation is low due to divergent control flow,
the GPU will be under-utilized and instruction throughput will drop. In an efficient
implementation, threads in a warp follow similar code paths, resulting in high SIMT
efficiency and thus high instruction throughput.

Therefore, we will asses the efficiency of our GPU implementations on the basis of these
three strategies.

The other important aspect of the problem, adapting unbiased physically based ren-
dering algorithms, also requires some clarifications. Because unbiased physically based
rendering algorithms can be very diverse, it is difficult to come up with a general method to
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adapt any such algorithm to the GPU. We will therefore focus on the most well known algo-
rithms: Path Tracing, BiDirectional Path Tracing and Metropolis Light Transport [50]. All
other unbiased algorithms are essentially variations of these three. Instead of implementing
the MLT directly, which is actually a biased algorithm, we focus on the ERPT algorithm
[11] which is a simple extension of the MLT algorithm that solves the start-up bias problem
(section 2.10).

Taking these algorithms as a starting point, the goal is to adapt these algorithms to allow
for efficient GPU implementations. In this context, adapting means making any change to
the original algorithm or its implementation with the goal to increase the efficiency of the
GPU implementation. These changes should not compromise the unbiased physically based
quality of the algorithm. Furthermore, it is important to assess the impact of any changes to
the convergence characteristics of the algorithm.

The problem statement does not specify whether or not the algorithm runs solely on
the GPU. This leaves open the possibility for a hybrid solution, where the GPU is used
only for certain algorithmic tasks while the remaining tasks are executed on the CPU. We
will investigate both the possibility of a hybrid solution (chapter 6) and the possibilities for
GPU-only rendering algorithms (chapters 7, 8 and 9).

To validate our implementations and compare their performance, we use a wide range
of test scenes with varying complexity. Figure 5.1 shows the test scenes and table 5.1 gives
a short motivation why these scenes are included in the test set. Note that all scenes are
of reasonbale size and will fit in device memory. In this thesis we restrict ourselves to the
rendering of models that fit entirely in device memory.

All tests are performed on a single test platform containing an Intel R©CoreTM2 Quad
CPU and NVIDIA R©GeFource R©GTX 470 GPU. Although the GTX 470 supports CUDA
2.0 compute capability, our algorithms only require CUDA compute capabilities 1.1 or 1.2.
Furthermore, our algorithms do not depend on the presence of L1 and L2 caches for per-
formance. Besides backwards compatibility, we chose to focus on compute capabilities 1.1
and 1.2 without the presence of caches because this emphasize the streaming characteristics
of the architecture. This makes our algorithms equally suitable for other GPGPU solutions
such as DirectCompute and ATI Stream [38, 3].

5.1 Related work

All relevant related work is already discussed in chapter 4. In this section, we will shortly
explain why previous work did not cover the research problem properly.

The work of Novak is most closely related to ours [40]. We borrow heavily from his
work on path regeneration to improve the GPU utilization in GPU PT and BDPT imple-
mentations. Novak also presented such a PT and BDPT algorithm. However, their work did
not use stream compaction to further increase GPU efficiency and speed up ray traversal.
Similarly, Hoberock used stream sorting to improve the performance of complex shaders,
but did not use stream compaction to improve GPU efficiency and ray traversal performance
either [26]. Furthermore, the BDPT implementation by Novak sacrifices effective impor-
tance sampling to realize an efficient GPU implementation, thereby significantly reducing
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5.1: Test scenes: (a) Sponza (b) Invisible date (c) Glass egg (f) Sibenik cathedral (d)
Fairy forest (e) Conference room (g) Stanford collection.

the strengths of the BDPT algorithm (see section 8.1.2). There have been no attempts to
implement the ERPT algorithm on the GPU that we know of.

Apart from GPU-only rendering, we also mentioned some work on hybrid algorithms
in chapter 4; most notably, the work of Cassagnabere [8] and Budge [7]. Cassagnabere
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uses the GPU for ray-triangle intersection only, performing ray traversal on the CPU. In our
work however, ray traversal is implemented on the GPU aswell. Budge also uses the GPU
for ray traversal, but their method aims at out-of-core path tracing, while we focus on the
rendering of models that fit device memory.

5.2 Context

In this thesis, we focus on the implementation of unbiased samplers. We do not focus on
specific ray traversal algorithms or material models. Our samplers are developed within
the framework of the Brigade ray tracing engine. In Brigade, the scene is represented by
a Bounding Volume Hierarchy to allow for interactive scene manipulation. The BVH’s
for static models are optimized using spatial splits [48]. We used the GPU ray traversal
algorithm published by Aila [1] with the triangle intersection method published by Havel
[23]. Note however that the rendering algorithms presented in this thesis are not tied to
any specific ray traversal algorithm or spatial data structure. By strictly separating the ray
traversal execution from sampler execution, our algorithms are easily combined with ray
traversal algorithms requiring large batches of input rays to achieve reasonable performance,
such as proposed by Aila and Garanzha [1, 20].

Name Triangles (103) Motivation
SPONZA 67 Architectural scene with large

area light, a combination of in-
door and outdoor lighting ef-
fects.

SIBENIK 80 Indoor architectural scene with
uneven geometry distribution.

STANFORD 370 Reasonably high primitive count
with many complex lighting ef-
fects due to specular and glossy
materials.

FAIRY FOREST 174 Outdoor scene with many high
resolution textures.

GLASS EGG 12 Indoor scene with various mate-
rials, mainly illuminated by indi-
rect light.

INVISIBLE DATE 9 Small scene with difficult indi-
rect illumination due to small
openings in the geometry.

CONFERENCE ROOM 1180 Detailed model with high primi-
tive count.

Table 5.1: Test scenes, their sizes in kilo-triangles and a motivation why these scenes were
used.
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Chapter 6

Hybrid Tracer

6.1 Introduction

In this chapter, we will investigate a hybrid architecture where the sampler is implemented
on the CPU, using the GPU for ray traversal and intersection. We will show that such an
architecture is very flexible, allowing as its basis many different ray tracing based samplers.
We will also show that the CPU side easily becomes the bottleneck, limiting the perfor-
mance gained by using a GPU. This hybrid architecture will reveal some inherent limita-
tions of GPU based unbiased tracers and serve as a reference for the GPU-only tracers in
later chapters.

6.2 Hybrid architecture

6.2.1 Sampler

An obvious way to harvest the ray traversal performance of modern day GPU’s, without
sacrificing flexibility in sampler implementation, is by using the GPU as a ray-traversal co-
processor. The sampler is implemented on the CPU, generating rays that require tracing.
These rays are then traced on the GPU and the results are used in the CPU sampler. This
requires a strict separation between sampler and ray traversal code. The flowchart for such
a sampler looks something like figure 6.1. Because the sampler often cannot proceed before
the ray intersection results are available, the sampler is suspended as soon as a ray requires
tracing. When the ray traversal results are in, the sampler is resumed. We will refer to
the process of resuming a sampler until it generates the next ray and gets suspended as
advancing the sampler.

Often, a sampler could generate more than a single ray before the intersection results of
any of these rays is required. For example, when connecting all eye and light vertices in a
BDPT sampler, multiple rays may be generated at once. This could increase performance
for specific samplers at the cost of complicating the general architecture, especially when
a sampler may output any number of rays instead of some fixed number. Because the
restriction of a single ray output per sampler advance does not fundamentally restrict the
type of sampler used, we will stick to this format for simplicity.
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Resume

Trace RayAdvance sampler

Suspend

Figure 6.1: General sampler flowchart. The sampler is advanced until a ray requires tracing.
Then, the sampler is suspended and the ray is traced. After tracing, the sampler is resumed.

6.2.2 Pipeline

Because the GPU is a massively parallel processor, it performs best when tracing many rays
at once. Furthermore, the PCIe bus, used for communicating between CPU and GPU, re-
quires large memory transfers to reach peak performance. Because a sampler only generates
a single ray at a time, batches of multiple samplers are used. By advancing all samplers in
a batch, a batch of rays is generated. This batch is sent to the GPU as one block, achiev-
ing high PCIe performance. The rays are then traced together on the GPU, allowing for
enough parallelism to fully utilize the GPU’s resources. When finished, the intersection
results are send back over the PCIe bus to host memory. The intersection results are used
by the samplers during their next advance.

The hybrid tracer is implemented as a 4-stage pipeline of sampler advance, ray copying,
ray traversal and result copying (Figure 6.2). Remember from chapter 3 that the CPU and
GPU can execute concurrently. Also remember that CPU and GPU execution may overlap
with memory transfers over the PCIe bus. Hence, the four stages of the pipeline can execute
concurrently, except for the ray and result copying, which compete for the same resource;
the PCIe bus. Notice the implicit dependencies between jobs in the CPU stream in figure
6.2, shown by the dotted arrows: A sampler advance job applying to a batch of samplers
is dependent on the ray traversal results from the preceding sampler advance job applying
to the same batch. It is not possible to advance a batch of samplers before the previous ray
intersection results are available. These dependencies can be hidden by using at least as
many independent batches of samplers as there are stages in the pipeline. In this case, four
batches of samplers is enough to keep the pipeline filled.

6.2.3 Details

To utilize all cores of a multicore CPU, we advance the samplers in a batch in parallel using
OpenMP [9]. Each sampler outputs exactly one ray, so the output position in memory does
not depend on the other samplers in the batch. Furthermore, samplers only use their own
sampler and ray intersection data. Hence, the samplers run virtually independent of one
another. Because each batch contains many more samplers as there are CPU cores in the
system, it is easy to utilize all cores and achieve good load balancing. In our implemen-
tation, the only interactions between samplers were caused by contributions to the image
plane and use of a shared random generator. These exceptions where handled by creating
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Figure 6.2: CPU-GPU pipeline. Samplers are advanced on the CPU, each generating a
single output ray. All rays are copied over the PCIe bus to the GPU, where the rays are
traced. The results are copied back. This process is repeated. Multiple independent sampler
batches are used to hide dependencies within the stream.

a separate image plane and random generator for each CPU thread. All image planes are
combined after tracing is complete. Usually, the number of threads equals the number of
CPU cores, so only a few image planes are required.

For each sampler batch, enough host memory is allocated to hold the rays and intersec-
tion results for sampler advancing. Extra memory must be allocated to hold any persistent
sampler data, needed for the next advance. Also, on the GPU, memory must be allocated
to hold all rays and ray traversal results. In most CPU-only tracers, only a single sampler is
run per core. Unless the scene is very large, running only a few samplers means that most
sampler data still resides in memory caches after tracing. However, in the hybrid tracer,
because each batch contains many samplers, all sampler memory is definitely flushed from
the cache between two advances of a sampler. The same holds for ray and intersection data.
Therefore, the hybrid tracer architecture is less cache friendly than most CPU-only tracers.

6.2.4 Sample regeneration

Until now, we assumed that each sampler always outputs a single ray after being advanced.
However, some samples require more rays to be traced than other, for example due to Rus-
sian roulette. This problem is solved by using sample regeneration [40]. When a sample
is finished, the corresponding sampler immediately starts a new sample. During the cool
down period, required for an unbiased result, only unfinished samples are advanced while
no samples are regenerated. We use a flag to mark output rays from disabled samplers. Dur-
ing the cool down period, the number of rays per batch reduces per iteration, reducing GPU
ray traversal performance. This is an inherent problem with GPU tracers: Because samplers
can only generate one or a few rays before their tracing results are required, many parallel
samplers are required to achieve high GPU utilization. Furthermore, as the number of rays
per sample is a stochastic variable, some samplers will take longer than others, requiring
a cool down period for an unbiased result. Depending on the scene and sampler used, the
duration of the cool down period will vary.
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6.3 Results

In this section we present measurements on the performance of our hybrid architecture and
discuss our findings. We tested the hybrid tracer using the path tracing sampler (see section
2.4). We will first study the PT performance within the generic sampler framework. Then
we will investigate the performance of the hybrid tracer.

6.3.1 Generic sampler performance

We start by assessing the CPU performance of the generic sampler framework. As explained
earlier, when a generic sampler is advanced it must generate a single output ray. Due to this
restriction, the implementation of a sampler within the generic sampler framework is usually
suboptimal. To determine the performance degradation caused by using the generic sampler
framework, we compared the performance of a generic PT and an optimized PT, both fully
implemented on the CPU. Figure 6.3 shows the number of PT samples per second for the
optimized and generic PT samplers. Both implementations ran on a single core, including
ray traversal. The figure shows that the overall performance suffers slightly from using the
generic sampler.
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Figure 6.3: Optimized vs. generic PT sampler performance in samples per second on a
single CPU core.
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6.3.2 Hybrid PT performance

In this section, we will study the performance of the Hybrid PT. In order to realize high GPU
performance and PCIe throughput, we used large batches of 256K samplers each. Figure
6.4 shows the hybrid PT performance for increasing number of CPU cores. The figure
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Figure 6.4: Hybrid tracer performance in samples per second depending on the number of
CPU cores.

clearly shows that the performance increases sub linear in the number of cores, indicating a
bottleneck, besides raw CPU processing power.

To further investigate the performance of the pipeline stages, figure 6.5 shows the tracer
performance for parts of the pipeline. The measured performance for a part of the pipeline
indicates the overall performance if this part would be the bottleneck. For convenience, per-
formance is measured in rays per second. Besides measuring the performance for the whole
pipeline (CPU+PCIe+GPU), we measure the performance for ray transfer and traversal
(PCIe+GPU) and for ray traversal independently (GPU). During measurements, all four
CPU cores are used for sampler advancing.

The figure clearly shows that advancing the samplers on the CPU constitutes a large
bottleneck. The independent GPU ray traversal performance is an order of magnitude
higher than the combined CPU+PCIe+GPU performance. For PCIe+GPU, the perfor-
mance decreases somewhat and seems to reach a maximum performance at about 40M rays
per second. This limit is caused by the maximum PCIe throughput and is as expected; in
our implementation, storage for a single ray requires 28 bytes and the corresponding in-
tersection result requires 16 byte. So, at 40M rays per second, this results in a total PCIe
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data traffic per second of 1120MB upstream and 640MB downstream; about 75% of the
theoretical peak performance for our test platform.

Note that even when the independent GPU performance is less than the maximum of
40M rays/s, the PCIe stage reduces performance somewhat. This is because the rays pro-
duced by a PT sampler are highly divergent and GPU ray traversal of divergent rays is
memory bandwidth bound [1]. Because the GPU and PCIe stages both compete for device
memory bandwidth, they will degrade each others performance somewhat.

So far, measurements indicate the CPU as the main bottleneck in our architecture. Fur-
thermore, we saw that sampler performance does not increase linear in the number of CPU
cores. This indicates another bottleneck at the CPU side. Besides CPU computing power,
the only resource of significance to our tracer is system memory. Further profiling revealed
that system memory bandwidth forms the main bottleneck on our test platform.

There are two reasons for this. First of all, just as with device memory, PCIe data
transfers take up system memory bandwidth. Second, as explained in section 6.2.3, running
generic samplers in large batches causes a lot of cache trashing. Each cache miss results in
a system memory transfer, so cache trashing increases the demands on system memory. For
these reasons, the hybrid tracer does not scale well with the number of cores and far from
utilizes all available GPU processing power.
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6.3.3 Conclusion

On our test platform, the performance of the hybrid architecture is bound by the system
memory bandwidth and is therefore not very scalable. Figure 6.5 gives an indication of the
enormous amount of GPU performance that is wasted. Because the sampler is only imple-
mented on the CPU, work balancing is difficult when system memory bandwidth becomes
the bottleneck. This problem could be targeted by using much faster system memory. How-
ever, advancing a large stream of generic samplers remains cache unfriendly and therefore
does not fit the CPU memory architecture very well. In contrast, the GPU is designed for
processing large streams of data in parallel. Therefore, in the remainder of this thesis we
will try to implement the sampler on the GPU, moving the complete rendering algorithm
to the GPU and effectively eliminating the CPU and PCIe as possible bottlenecks. As an
added advantage, this makes it much easier to fully utilize all available GPU’s in the system
with multiple GPU’s.

In the following chapters, we will implement variations of several well known unbiased
samplers on the GPU. The work flow of these samplers will closely resemble the generic
sampler framework of iteratively advancing samplers and traversing corresponding output
rays.

Figure 6.6: Sibenik cathedral rendered with hybrid PT.
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Chapter 7

Path Tracer (PT)

7.1 Introduction

In the last chapter, we saw that for a hybrid CPU-GPU tracer, the CPU becomes a significant
bottleneck. Therefore, in the remainder of this thesis, we will try to implement the complete
sampling algorithm on the GPU. We will start with PT in this chapter, moving to BDPT and
ERPT in later chapters. First, the PT algorithm is described as a flowchart. This flowchart
is the basis for a two phased GPU PT implementation which forms a starting point for the
GPU BDPT and EPRT implementations in later chapters. We will further show how to
improve the performance of the GPU PT through stream compaction.

7.2 Two-Phase PT

7.2.1 PT Flowchart

The PT sampling algorithm can be described using the flowchart in figure 7.1. The sampling
algorithm is split into processing steps. Ray traversal is performed between processing
steps. A processing step may generate an output ray which must be traced before the next
processing step starts. The tracing itself is left implicit and not incorporated in the flowchart.

As described in section 2.4, a PT sample is created by sampling a path starting from
the eye and explicitly connecting each path vertex directly to a light source. This is usually
done by repeatedly extending the eye path with one vertex, each time making a connection
to a light source, until the eye path is terminated. The flowchart describes such a method,
including path regeneration. So when a sample is complete, the sampler is regenerated and
the generation of a new sample is started immediately.

During path extension, an extension ray is generated. This ray is then traced to find the
next path vertex. When a new PT sample is started, the first extension ray is generated in the
Regenerate step, according to the used camera model. If the path already contains vertices,
the next extension ray is generated in the Extend step, sampling a random outgoing direction
for the last path vertex based on its incoming direction and local BSDF. The extension
ray is then traced and the intersection is handled in the Intersect step where the new eye
path vertex is constructed. If no intersection was found, the sample terminates and a new
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Figure 7.1: Two-Phase PT flowchart. The two phases are handled iteratively one after the
other. Each time a thread changes its phase, it may output an optional output ray that will
be traced before the next phase is started.

sample is regenerated. If the next vertex is a light source, an implicit light transport path
is found and is handled in the Implicit step. In the Connect step, an explicit connection
ray between eye vertex and light source is generated. Note that the Connect? condition
does not check whether the connection is blocked, but only if a connection ray could be
generated (for example, generation fails if the selected light source points away from the
path vertex). If generating a connection ray was successful, the connection ray is traced.
Only then, the Explicit step checks if the connection was obscured. If not, the connection is
successful and a valid light transport path is found. When no connection ray was generated,
the Explicit step is skipped and the eye path is immediately extended. During the Extend
step, Russian roulette is performed to determine if the path must be terminated. When the
path is terminated, the PT sample is complete and a new sample is generated.

7.2.2 Two-Phase PT

Note that the steps in the flowchart are divided into two phases: an Extend phase and
a Connect phase. During the Extend phase, the extension ray is generated. During the
Connect phase, an explicit connection ray is generated. After these rays are generated and
traced, their results are handled in the opposite phases, causing the handling of the extension
ray intersection to be done in the Connect phase and the handling of the connection ray
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intersection in the Extend phase. At first sight, this might seem like a strange separation of
steps in two phases, but it has an interesting property: Whenever a processing step generates
an output ray, the next processing step lies in the opposite phase. Hence, rays only need
tracing when the control flow passes a phase border. This property gives rise to Two-Phase
Path Tracing (TPPT). In TPPT the two phases are executed one after the other. During phase
execution, any number of steps belonging to this phase may be executed. After one phase
is finished and just before the next phase starts, an optional output ray requires tracing. So
TPPT repeatedly executes the two phases, one after the other, interleaved with optional ray
tracing. This method lends itself for a flexible GPU PT implementation and forms the basis
for the more advanced GPU tracers in later chapters.

7.3 GPU PT

In the GPU implementation of TPPT, many independent PT samplers are run in parallel.
The tracer is divided in three kernels, one kernel for each phase and a ray traversal kernel.
The ray traversal kernel is very similar to the one used in the hybrid tracer from chapter 6.

During each iteration, both phases are executed. Each phase is executed for all active
samplers in parallel, so each GPU thread corresponds to a single PT sampler. After each
phase, all output rays are traced using the ray traversal kernel, before the next phase starts.
Hence, the ray traversal kernel is executed twice every iteration. The more iterations are
performed, the better converged the end result will be. The intermediate images can be
used to display progressive results. Note that it takes multiple iterations to form a single PT
sample.

During phase execution, all threads execute independent samplers, therefore no explicit
synchronization is required between threads in blocks. However, to obtain high GPU effi-
ciency, threads in a warp should follow the same code path as much as possible. Note that
in figure 7.1, steps are always visited in the same order and no step is ever executed twice
during the same phase. Each thread simply executes all relevant steps in this fixed order
(top-down in the flowchart), skipping any steps not required by the sampler. This way, all
threads in a warp executing the same step will automatically run in parallel using SIMT. All
threads skipping this step are idle until the step is complete. Only when all threads in the
warp skip a certain step will the step be skipped by the warp altogether.

Each sampler requires storage for a single vertex (the last path vertex). It may also read
the output ray from the last phase and write an optional output ray. To achieve high memory
bandwidth, these rays and vertices are stored as a structure of arrays. Threads in a warp al-
ways handle samplers that are laid out alongside each other in memory. Because all threads
in a warp execute the same step using SIMT, any memory access by these threads can be
serviced using coalesced memory transactions, significantly increasing effective memory
bandwidth.

Note that, because path regeneration is used to increase efficiency, TPPT also requires
a cool down phase to turn the consistent progressive results into an unbiased result.
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7.3.1 Pixel allocation and measurements

When a sampler is regenerated, a new image pixel must be selected from which to start
the next sample. Furthermore, methods for measuring the algorithm’s progress and perfor-
mance are required. Implementing these tasks is not trivial in a highly parallel environment.
We implemented these tasks using atomic instructions at a low frequency. Each sampler lo-
cally accumulates its measurement counters. Only once every few iterations, a warp scans
the local counters of its samplers and adds the contribution of all threads in the warp to the
global measurement counters using atomic instructions. If the frequency of global accumu-
lation is chosen low enough (every 10 or more iterations), this does not significantly impact
the overall performance.

A similar method is used for pixel allocation. Instead of globally allocating a single new
pixel when a sampler is regenerated, n new pixels are allocated using atomic instructions
only every n regenerations, reducing the number of atomic instructions.

7.4 Stream compaction

The TPPT implementation from last section forms a starting point for the SBDPT and ERPT
implementations of later chapters. In this section, we will further improve on the TPPT
implementation using stream compaction and show that merging the two phases results in a
more efficient GPU PT implementation, called Sample Stream PT(SSPT).

7.4.1 Ray output stream compaction

In the TPPT implementation, all samplers may output an optional ray after each phase. Be-
cause all samplers are processed in parallel, these output rays are also generated in parallel,
therefore it is not possible to sequentially pack all output rays in a compact stream of rays.
A simple solution is to have an output buffer contain enough space to hold exactly as many
rays as there are samplers. After a phase, each sampler writes its output ray at its corre-
sponding location in the output buffer. Because ray output is optional, each sampler has to
output an activation flag indicating whether a ray has been output or not. The ray tracing
kernel only needs to trace rays having their corresponding flag raised.

This means that during ray tracing, when a GPU warp loads a continuous batch of 32
rays from the output buffer, only a subset of the rays require actual tracing. To handle this,
either new rays need to be loaded, of which again only a subset is active, or some threads in
the warp are disabled during the tracing of the rays. The first solution seems fairly complex
but the second reduces the GPU efficiency as some threads in the warp will become idle.

Compaction scan

A possible solution is to use a compaction kernel to compact the output buffer. After each
phase, a scan (parallel prefix sum) is applied to the activation flags, computing the number of
active rays preceding each ray in the buffer. This number is then used to compact the output
buffer into a continuous stream of rays. Compacting the actual ray stream would require
reading and writing of all rays, so instead of packing the ray buffer itself, a continuous
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stream of indices to active rays in the original buffer is built. During ray traversal, each
warp reads 32 ray indices which are dereferenced to obtain 32 active rays. Although this
increases the GPU efficiency during ray traversal, running a full scan requires several kernel
executions and often offsets most performance gains during ray traversal.

Another problem is that, because the output stream contains many inactive rays, coa-
lesced memory access becomes less efficient, reducing effective memory bandwidth (see
section 3.3 for an explanation on coalesced memory access). This is most pronounced for
CUDA architecture models 1.0 and 1.1, due to their strong requirements for coalesced mem-
ory transfers. Neighboring indices in the packed index stream do not necessarily point to
rays that are stored continuous in memory. This results in mostly non-coalesced memory
transactions during ray access, significantly reducing the memory bandwidth. This problem
is reduced for newer CUDA models, as the hardware serves each memory access in the least
amount of coalesced memory transactions possible. However, the total amount of memory
accessed exceeds that which is needed due to inactive rays that are unnecessarily loaded by
hardware during coalesced memory transactions (see picture 3.3).

Immediate packing

We use a different method, which makes use of a parallel scan per block and atomic in-
structions. Because CUDA 1.0 does not support atomics, this method only works for archi-
tectures 1.1 and later. Instead of packing the output rays after each phase, rays are packed
before they are written to the buffer during each phase. A single counter is used to keep
track of the number of rays written to the output buffer during a phase. The counter is ini-
tialized to zero. Each time a batch of rays is written to the buffer, the counter is increased by
the size of this batch, effectively allocating buffer space for the batch. Atomic instructions
on the same memory are serialized by the hardware, so it is important to keep atomics to
a minimum. As threads within a block can communicate efficiently through shared mem-
ory and explicit synchronization, all output rays of a single block are first locally packed
using a parallel scan just before actual output. This results in a single, large batch of rays
per block. Again, instead of actually packing the rays, a list of relative batch indices is
generated. Then, buffer space is allocated using only a single atomic instruction per block.
Using this global space and the local batch indices, each thread writes its output ray to the
buffer. Using this method, the final ouput buffer is one continuous stream of active rays.
Because the compaction is performed during each phase, no extra kernels are executed for
this method, significantly increasing performance. Note that each sampler must store the
global index for its output ray, so that it can access the intersection results during the next
phase.

With a little work, memory access is also handled efficiently for all CUDA architec-
tures because each warp accesses only batches of active rays stored in continuous memory.
A warp (half-warp) never accesses more than 32 (16) continuous rays during memory ac-
cess. On CUDA architecture 1.2 and later, each memory access is therefore served with at
most 2 (4) coalesced memory transfers. The extra transfer is needed because each coalesced
memory access can only access one aligned memory line while the accessed rays may cross
one memory line boundary. Because no inactive rays are present in the buffer, no unneces-
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Figure 7.2: Rearranging output rays between threads in a block using shared memory
achieves coalesced ray output on CUDA 1.1 architecture. Rays are rearranged to respect
alignment requirements (dotted lines) and coalesced access requirements, before they are
written to the buffer.

sary data is loaded by the hardware. For efficient memory access on CUDA architecture 1.1,
a little extra effort is required. To allow coalesced memory access, the accessed memory
must not only be continuous and aligned, but the threads must also access this continuous
memory in a predefined order (see section 3.3). To achieve this, the output rays in each
block are rearranged through shared memory. Then the rays are written by different threads
in the block to allow coalesced memory transfers (see figure 7.2). For a block trying to
store n rays, this method requires no more than

⌈ n
16

⌉
+ 1 coalesced memory transfers. The

performance gain due to coalesced memory access greatly exceeds the cost of rearranging
the rays through shared memory.

7.4.2 Sampler Stream PT

The output compaction method from last section is also applicable to the tracers in later
chapters. In this section, we will use stream compaction to further improve the performance
of the GPU PT algorithm. This method however only applies to the GPU PT. The improve-
ments reduce the required memory bandwidth and take advantage of higher ray tracing
performance for coherent rays. We will refer to the improved PT as a Sample Stream PT
(SSPT).

The first change is to partially merge the Extend and Connect phases into a large Ex-
tend phase. Instead of generating only a single optional ray per Extend phase, we will
generate two optional rays, an optional connection ray and an optional extension ray. In ad-
dition to the Extend and simplified Connect phases a new Generate phase is added. Each
phase still corresponds to a single kernel. Figure 7.3 shows what the flowchart of this tracer
looks like in comparison to the two phase PT.

Each sampler starts in the Generate phase, generating the primary path ray starting at
the eye. When the sampler is terminated, no new sample is regenerated. We will explain
this shortly. During the Extend phase, the next path vertex is constructed. Then a possible
connection to the light source is made and finally an extension ray is generated. All ex-

56



Path Tracer (PT) 7.4 Stream compaction

Explicit

Extend

Generate

Terminate?

Yes
No

Intersect

Implicit

Connect

Intersection?No

Yes

Connect?

Yes

No

Extend phase

Connect phaseGenerate phase

Figure 7.3: Flowchart for SSPT. During the extend phase, an optional connection ray and
extension ray are generated. Note that the flow of control is split in the connect step. Only
if a connection ray is generated is a Connect phase executed for this sampler. The sampler
starts by generating a primary ray in the Generate phase. No path regeneration is used.

tension and regenerated rays are traced just before the Extend phase, all connection rays
are traced just before the Connect phase. During each iteration, the Generate, Extend and
Connect phases are executed, in that order, for all applicable samplers only.

In TPPT, the path vertex is constructed in the Connect phase, stored in global memory
and read again during the Extend phase to generate the extension ray. By merging the
Extend and Connect phase, it is no longer necessary to store and load the path vertex
to/from memory, reducing the required memory bandwidth for the algorithm.

The most important distinction between TPPT and SSPT is that not only the output
rays are compacted before output, but the actual stream of samplers itself is compacted as
well (see figure 7.4). During the Extend phase, all sampler data is modified, so all data is
once read and then written by the kernel. Instead of writing back the sampler data to the
same location it was read from, the sampler data is compacted before output, removing all
terminated samplers from the stream. This is the reason why samplers do not regenerate,
terminated samplers are removed from the stream instead. This means that the stream of
samplers becomes shorter after each iteration. Therefore, at the start of each iteration, new
samplers are generated at the end of the stream by executing the Generate phase. This way
the total number of active samplers remains constant. The most important advantage of
this method is that it can take advantage of primary ray coherence. Because all regenerated
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samplers are placed at the end of the stream, their primary rays will be traced together. These
primary rays all have similar origin and direction which is called primary ray coherence
[54]. Coherent rays will often visit similar parts of the scene. When coherent rays are traced
together by different threads in a GPU warp, average SIMT efficiency is increased and GPU
caches become effective, this results in a significant increase in ray tracing performance [1].
To obtain good primary ray coherence within warps, samplers should be regenerated using
4x4 tiles or along a Z-curve on the image plane [39]. Besides primary ray coherence, any
secondary ray coherence due to specular reflection and small light sources is also exploited
by this method: when coherent primary rays all hit the same mirror, the coherent secondary
reflection rays are compacted in the output stream. Hence, the coherence between samplers
in the stream is preserved. The same holds for connection rays. Therefore, SSPT also
performs well for regular Whitted style ray tracing.

...

...

...

Extend stream

Extend stream

Connect stream

Generate stream

Figure 7.4: In SSPT, each Extend phase takes a single Extend stream as input and generates
two compact output streams, a new Extend stream and a Connect stream. The Connect
stream contains all connection rays and corresponding connection data. The Extend stream
contains all extension rays and corresponding sampler data. All terminated samplers are
regenerated at the end of the Extend stream.

Note that in the connect step, the flow of control is split. This indicates that the Con-
nect phase is only executed for all samplers that generated a connection ray. This is also
achieved through stream compaction. When a connection is made during the Extend phase,
the energy traveling along the corresponding light transport path is computed immediately.
This energy is then stored with the connection ray as well as the pixel the path contributes
to. This way, the connection ray stream contains enough information to contribute any ex-
plicit path energy found, without having to access the corresponding sampler. Because the
connection ray stream is compacted, by executing the Connect phase for all connection rays
in the connection stream, the phase is effectively executed only for samplers that actually
generated a connection ray. This further increases the GPU efficiency during the Connect
phase.

7.5 Results

In this section we will present the results of our implementation of the TPPT and SSPT
methods. We will first asses the SIMT efficiency of both algorithms and then study the
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performance of our implementation.

7.5.1 SIMT Efficiency

The GPU performance of the implementation is largely determined by the SIMT efficiency
of the algorithm. To give some insight in the SIMT efficiency of the PT implementations,
we measured the average efficiency and occurrence of algorithmic steps during an iteration.
The occurrence of a step is the percentage of warps that execute this step during an average
iteration. Note that a warp skips a step only when all threads in the warp skip the step.
The efficiency of a step is the average percentage of threads in a warp that execute the step
in SIMT whenever the step occurs. Tables 7.1 and 7.2 show the efficiency and occurrence
of the algorithmic steps of TPPT and SSPT tracers. Note that because the PT algorithm is
stochastic, the occurrence percentage corresponds to the occurrence probability.

Results
Regenerate Extend Intersect Explicit Implicit Connect
Ef% Oc% Ef% Oc% Ef% Oc% Ef% Oc% Ef% Oc% Ef% Oc%

SPONZA 51 100 99 100 100 100 78 100 4 31 99 100
SIBENIK 50 100 99 100 100 99 72 100 3 7 99 99

STANFORD 33 100 99 100 100 100 48 100 3 3 99 100
FAIRY FOREST 58 100 82 100 100 99 77 100 3 11 82 99

GLASS EGG 51 100 96 100 100 99 34 100 3 0 96 99
INVISIBLE DATE 49 99 99 99 100 100 59 99 3 0 99 100

CONFERENCE 50 100 99 100 100 100 69 100 3 12 99 100

Table 7.1: SIMT efficiency and occurrence of algorithm steps in an average TPPT iteration.

We start with some observations on TPPT. Except for the Implicit step, all steps occur
with high probability. Implicit paths occur in general with such low probability that the
probability of having at least one implicit path in a warp is still relatively small for most
scenes. Scenes with larger area-lights (SPONZA, CONFERENCE) have a larger probability
of finding implicit paths, therefore having a higher Implicit occurrence probability.

Regenerate has around 50% percent efficiency for most scenes, due to Russian roulette
terminating about half the paths with each iteration. Because the STANFORD scene has a
lot of specular materials, paths are less likely to terminate, reducing Regenerate efficiency.

The efficiency for the Extend, Intersect and Connect steps is close to 100%, except for
the FAIRY FOREST scene. This is because the FAIRY FOREST is an outdoor scene where
many rays do not hit any geometry. Whenever an extension ray does not hit any geometry,
the Extend and Connect steps are not performed and the path is regenerated. This also
explains the slight increase in Regenerate efficiency for the FAIRY FOREST.

Finally, the Explicit efficiency varies significantly with the scenes. The Explicit step
is executed each time an explicit connection is created. Whether a connection is created is
very scene dependent. For example, the STANFORD scene has a lot of specular materials
which fail to make an explicit connection, reducing the Explicit efficiency. Furthermore,
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most geometry of the GLASS EGG scene lies behind a bright light source, reducing the
number of created connections and thereby the Explicit efficiency.

Results
Regenerate Extend Intersect Explicit Implicit Connect
Ef% Oc% Ef% Oc% Ef% Oc% Ef% Oc% Ef% Oc% Ef% Oc%

SPONZA 100 52 96 99 100 99 100 78 8 18 96 99
SIBENIK 100 50 99 99 100 99 100 73 3 6 99 99

STANFORD 100 28 99 99 99 99 100 40 3 3 76 86
FAIRY FOREST 100 59 82 99 100 99 100 78 4 9 82 99

GLASS EGG 100 50 96 99 100 99 100 34 3 0 95 99
INVISIBLE DATE 100 43 99 99 99 99 100 52 3 0 99 99

CONFERENCE 100 50 99 99 100 99 100 70 5 8 99 99

Table 7.2: SIMT efficiency and occurrence of algorithm steps in an average SSPT iteration.

Turning to the SSPT tracer, there are a few key differences. To better understand these,
note that the probabilities for executing a step for a sampler are the same for both TPPT
and SSPT as they implement the same sampler. Therefore, decreased occurrence must
always mean increased efficiency. Most notable, in SSPT the Explicit and Regenerate
steps both have 100% efficiency but reduced occurrence. Compared to TPPT, it seems that
the occurrence and efficiency measures are exchanged for these steps. This is actually more
or less true. Instead of regenerating samplers in place, the SSPT generates new samplers
at the end of the stream. Similar, SSPT generates a compact input stream for the Explicit
step. Because both these steps operate on all samplers in a continuous stream, maximum
efficiency is realized. Apart from this, the efficiency and occurrence for both algorithms
are virtually the same, except for a slight increase in Implicit step efficiency for the SSPT
tracer due to more coherent ray traversal.

These efficiency results show that the TPPT and SSPT methods both achieve high effi-
ciency for most steps, which will result in high SIMT efficiency when executing these steps
on the GPU, increasing performance.

7.5.2 Performance

In this section, we present the performance of our GPU path tracers. Figure 7.5 shows the
overall performance in samples and rays per second for TPPT, TPPT with output stream
compaction and SSPT. The performance is somewhat higher for the smaller scenes, but
overall the performance does not depend heavily on the scene1.

Packing the output rays for TPPT gives a slight increase in performance for all scenes.
However, packing the whole stream as in SSPT shows a very significant increase in perfor-
mance. Interestingly, its performance is structurally higher than the ray traversal speed as
measured in figure 6.5. This is because the SSPT exploits primary ray coherence, resulting

1This is as expected, as ray traversal time only increases logarithmically with the number of scene primi-
tives.
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Figure 7.5: General PT performance in rays and PT samples per second for TPPT with and
without output stream compaction and the SSPT.

in increased ray traversal performance. Figure 7.6 shows the ray traversal performance for
extension rays in TPPT with output stream compaction and SSPT. Ray traversal is up to 50%
faster for SSPT due to ray coherence. There is also a measurable increase in traversal speed
for connection rays, but the increase is less pronounced compared to extension rays. The
reason we presented the TPPT sampler in this chapter, even though SSPT is significantly
faster, is because TPPT forms the bases for the samplers in the next two chapters.

Figures 7.7 and 7.8 show a time partition of algorithmic phases for respectively an
average TPPT and SSPT iteration, including ray traversal. The time partitions for both
algorithms look very much alike. The most notable difference is that the Connect phase in
SSPT takes a lot less time because most of its work has been moved to the Extend phase.
The figures show that the vast majority of iteration time is spent at ray traversal, while on
average about 18% of the iteration time is spent advancing the samplers. These results show
that the GPU samplers are not significantly less efficient than their CPU counterparts. Note
that about 5% of the time is not partitioned. This time is spent on iteration overhead such
as progressive display.

The performance of the GPU implementations depends on the size of the sampler
stream. If the stream is too short, there will not be enough parallelism to fully utilize
the GPU. In particular, the GPU in our test platform contains 16 SM’s. On each SM, up
to 16 warps are executed concurrently using hyper threading. Therefore, the stream must
at least contain 8192 threads or 256 warps to be fully utilized. However, to allow for ef-
fective load balancing, the GPU should be filled several times. To give an indication of
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Figure 7.6: Extension ray traversal for TPPT and SSPT (sampling not included in figures).
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Figure 7.7: TPPT procentual time partition of an iteration.

how performance depends on stream size, figure 7.9 and 7.10 show the performance of the
TPPT and SSPT algorithms for increasing stream sizes. Note that the stream size increases
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Figure 7.8: SSPT procentual time partition of an iteration.

exponentially. The figures show that performance increases as the stream size increases, but
that it eventually stabilizes. In our experiments we used a stream size of 8192 warps, filling
the GPU 32 times. In later chapters we will not repeat these graphs for the new samplers
as their shape remains virtually the same as for PTTP and SSPT. In practice, one should
choose the largest stream size that still fits in memory. This depends on the scene size and
available GPU memory.

Finally, table 7.3 shows the memory footprint of both methods for 256 warps. Note that
TPPT has about twice the memory consumption as SSPT. This is because SSPT requires
much less persistent sampler state. Where TPPT has to store extra information for compu-
tations during the Connect phase, the SSPT does most of the work during the Extend phase,
requiring only little persistent data per explicit connection.

Memory usage
TPPT 2560 Kb
SSPT 1216 Kb

Table 7.3: Memory usage of both PT tracers for sampler and ray storage per 256 warps.

The results from this section have shown that especially the SSPT algorithm results in
an efficient GPU path tracer, having an acceptable memory footprint and high performance.
However, in chapter 2 we saw that much better samplers than PT exist, resulting in less vari-
ance in the image estimate. In the next two chapters, we will show how the TPPT method
can be extended to implement the more advanced BDPT sampler and ERPT sampler.

63



7.5 Results Path Tracer (PT)

 0

 5

 10

 15

 20

 25

256
512

1024
2048

4096
8192

16384

M
ill

io
n 

Sa
m

pl
es

 p
er

 s
ec

on
d

Stream size in warps

Two-Phase PT performance vs. stream size

Sponza
Sibenik
Stanford
Fairy Forest
Glass Egg
Invisible Date
Conference

Figure 7.9: TPPT performance in samples per second as a function of the sampler stream
size in warps.
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Figure 7.10: SSPT performance in samples per second as a function of the sampler stream
size in warps.
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Path Tracer (PT) 7.5 Results

Figure 7.11: Conference room rendered with SSPT.
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Chapter 8

Streaming BiDirectional Path Tracer
(SBDPT)

In this chapter, we will present the SBDPT algorithm, a streaming BDPT algorithm for the
GPU. In section 8.1, we give an introduction to the problem and the SBDPT algorithm. In
section 8.2, a recursive formulation for MIS is derived which is used in section 8.3 where
the SBDPT algorithm and its GPU implementation are presented.

8.1 Introduction

In this section, we explain why BDPT is not well suited for a GPU implementation. We will
further discuss a partial solution as presented by Novak [40], before giving an overview of
our own solution: the SBDPT algorithm.

8.1.1 Problems with GPU BDPT

In the original BDPT algorithm, both a complete eye path and light path are constructed
first. All eye vertices are then connected to all light vertices to obtain a collection of light
transport paths. These light transport paths are weighted using multiple importance sam-
pling, and their contribution is added to the image. Directly implementing this algorithm
on the GPU proves to be challenging for several reasons: first, unlike normal path trac-
ing, the algorithm requires the full storage of both the light and eye path. As the length of
these paths are not yet known in advance, either a dynamic allocation scheme is required,
or enough memory must be allocated per sample beforehand to reach some predetermined
maximum path length. Having a maximum path length causes bias in the resulting image.
By setting a large maximum path length, this bias might often be unnoticeable small, but as
most paths would be significantly shorter than the maximum length, a lot of memory would
be waisted.

Another major challenge is how to achieve high GPU performance. As seen earlier,
for high GPU performance we require both coalesced memory access and coherent code
execution within GPU warps. Assuming each GPU thread handles a single bidirectional
sample, these goals turn out to be difficult to achieve. The problems are caused mainly by
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8.1 Introduction Streaming BiDirectional Path Tracer (SBDPT)

the difference in path length between samples. It can take significantly longer for one thread
to finish its light and/or eye path than for other threads in the same warp. This problem
reappears during the connection of the light and eye paths. The number of connections is
proportional to the lengths of both the eye and light paths. Hence, some threads will have
to make many more connections than others. This problem is amplified when computing
correct MIS weights, requiring iteration over all eye and light vertices for each connection.
So, in a trivial implementation some threads will have to wait many iterations for others to
finish, resulting in low GPU efficiency and threads within a warp will have very different
memory access patterns, resulting in a low effective memory bandwidth.

8.1.2 Per warp Russian roulette

A simple and attractive solution might be to perform Russian roulette per warp, instead
of per thread. So, during path construction, either all threads in a warp extend their path,
or they all terminate, guaranteeing that all eye resp. light paths in a warp have the same
length. This solves the GPU efficiency problems; all threads will make equally many con-
nections and have vary similar memory access patterns, allowing for high efficiency and
memory bandwidth. This is exactly the solution as presented by Novak [40], albeit their
implementation did not contain MIS. Although achieving high performance, this solution
has two significant drawbacks: the paths still need to be fully stored in memory, resulting
in a maximum path length, and performing Russian roulette per warp does not allow for
effective importance sampling w.r.t. path length. When applying per-warp Russian roulette,
a fixed termination probability must be used instead of a probability that depends on the
local material and proposed extension direction. This makes importance sampling using
Russian roulette impossible. For simple scenes with relatively uniform diffuse materials,
this poses no problem, but when materials start to vary significantly, containing for example
highly reflective materials, importance sampled Russian roulette is much more effective.
Bidirectional sampling with MIS receives its strength from optimally combining different
importance sampling techniques, each effective in different situations. By using per-warp
Russian roulette, the difference between these importance sampling techniques is reduced,
thereby reducing the strength of their combination.

8.1.3 Algorithm overview

We propose a solution that does not restrict path lengths, has a fixed memory footprint per
bidirectional sample and allows for per-warp Russian roulette. First, we will give an alter-
native method for computing MIS weights. Veach provided a formulation for constructing
provable optimal MIS weights [50]. This construction requires iteration over all vertices in
the path for each connection. We propose an alternative method for computing these opti-
mal weights. By recursively computing two extra quantities in each vertex of the light and
eye path, we show that for each connection the optimal weights can be computed using a
fixed amount of computations and only data from the two vertices directly involved in the
connection, independent of the actual path length. Using this, we slightly alter the BDPT
algorithm to achieve high GPU efficiency. Instead of connecting a single eye path to a sin-
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gle light path, a new eye path is generated for each light vertex. Using this method, in each
iteration either the light- or eye path is extended by a single vertex and a single connection
is made between the last vertices on both paths, resulting in high GPU efficiency. Because
only the last vertices are involved in each connection and MIS weight computations only
requires these vertices, we no longer have to store all vertices on the path, just the last ver-
tices suffices. This significantly reduces the memory usage and at the same time allows for
high effective memory bandwidth.

8.2 Recursive Multiple Importance Sampling

Whenever an eye path and light path are connected, we need to compute the weight for this
newly constructed sample. Veach proposed a method for constructing weights according to
the power heuristic [50]. Their method iterates over all vertices in the path to construct the
probabilities needed to calculate this weight. We propose a different schema for computing
the power heuristic weights. During the construction of the eye and light paths, we recur-
sively compute two quantities in each path vertex. Using these quantities, the weights can
be constructed more locally, without having to iterate over all vertices for each connection.
This proves to be advantageous when connecting paths of varying lengths in a data parallel
context, such as on the GPU.

8.2.1 Recursive weights construction

In this section, we will present our recursive computation schema for computing the power
heuristic weights. We will give a more formal derivation in the next section. Remember
from section 2.7 that applying the power heuristic to a light transport path Xs of length k,
sampled using an eye path of length s, results in a MIS weight function of

ws (Xs) =
p̂s (Xs)

β

∑
k
i=0 p̂i (Xs)

β
(8.1)

Our main concern is with the construction of the denominator D(Xs) = ∑
k
i=0 p̂i (Xs)

β. The
i’th term in D(Xs) represents the probability of sampling Xs using a sampling strategy with
i eye vertices and k− i light vertices. Based on common factors in the terms, we can split
D(X) into three parts, as shown in figure 8.1.

D(Xs) =
s−1

∑
i=0

p̂i (Xs)
β + p̂s (Xs)

β +
k

∑
i=s+1

p̂i (Xs)
β (8.2)

1. The first term represents all sampling strategies with less than s eye vertices. These
strategies all sample the vertices xk · · ·xs from the light. Hence, the probability of
sampling these vertices is a common factor between the terms within the summa-
tion. What is left for each term is the probability of sampling the remaining eye path
vertices using the corresponding sampling strategy.
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Figure 8.1: The weight’s denominator ∑
k
i=0 p̂i (X)β for a path Xs can be split into three

parts: 1) All sampling strategies having the connection edge within the original eye path,
2) The sampling strategy with which Xs was sampled, and 3) all sampling strategies having
the connection edge within the original light path. The figure shows its application to a path
of length k = 4, sampled using s = 2 eye vertices.

2. This is the strategy with exactly s eye vertices. Hence, this is the strategy actually
used to sample this path.

3. The last term represents all sampling strategies with more than s eye vertices. These
strategies all sample the vertices x1 · · ·xs+1 from the eye. Hence, the probability of
sampling these vertices is a common factor between the terms within the summation.
What is left for each term is the probability of sampling the remaining light path
vertices using the corresponding sampling strategy.

Remember that the vertex x0 on the image plane is always sampled as part of the eye path
and is left implicit. Note that, when factoring out the common factors in the first term, what
is left is a summation over the probabilities of sampling the first x1 · · ·xs−1 vertices using
any bidirectional sampling strategy. The same holds for the third term. If we are able to
recursively construct these sums while tracing the eye/light paths and storing these sums
within the path vertices, we no longer have to iterate over all path vertices when computing
the weight. Therefore, we propose to compute two recursive quantities in each vertex xi

while constructing the eye and light paths:

• pi: The probability with which the path x1 · · ·xi was sampled so far. This quantity can
be constructed recursively by multiplying pi−1 with the probability of generating the
next vertex xi on the path.

• di: The sum of the probabilities for sampling the path x1 · · ·xi using any bidirectional
sampling method, under the assumption that the first light path vertex xi is given (with
a probability of 1). Expressing this quantity recursively is slightly more involved. The
sum of probabilities can be divided in two parts:

1. The probability of sampling x1 · · ·xi−1 as an eye path.
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2. The sum of probabilities of sampling at least the last two vertices xixi−1 as a
light path.

The first part simply equals pi−1. The second part is the product of the probability
for sampling xi−1 backward from xi, and the sum of the probabilities for sampling the
remaining x1 · · ·xi−2 vertices using any bidirectional sampling method, given light
path vertex xi−1. Hence, this can be expressed recursively as di−1PA (xi→ xi−1).

When connecting a light and eye path, the weights can be constructed using only these
quantities in the neighboring vertices of the connection edge. We will just state the recursive
construction of these quantities here. In the next section, we will provide a more formal
derivation. For the eye path, the quantities are labeled pY

i and dY
i . For the light path, the

quantities are labeled pZ
i and dZ

i . Using the following recursive definitions, the quantities
are computed during eye/light path construction:

pY
0 = 1

pY
i = pY

i−1PA (yi−1→ yi)
β

(8.3)

pZ
0 = 1

pZ
i = pZ

i−1PA (zi−1→ zi)
β

(8.4)

dY
0 = 0

dY
i = pY

i−1 +dY
i−1PA (yi→ yi−1)

β
(8.5)

dZ
0 = 0

dZ
i = pZ

i−1 +dZ
i−1PA (zi→ zi−1)

β
(8.6)

Then, when connecting an eye path Ys and a light path Zt to form X, the corresponding
weights become:

p̂s (X)β = pY
s pZ

t

D(X) = pZ
t PA (zt → ys)

β dY
s

+ pY
s pZ

t

+ pY
s PA (ys→ zt)

β dZ
t

ws (X) =
p̂s (X)β

D(X)

(8.7)

Note that during this construction, we consider the path y1 · · ·yszt · · ·z1. Unless only
perfect diffuse and perfect specular materials are used, to compute PA (ys→ ys−1) the vertex
zt is also required (to determine the incoming direction). Because zt is not known during the
construction of the eye path, dY

s can only be computed when the actual connection is made.
The same hold for dZ

t .
After the light and eye paths are constructed, the amount of computations required to

compute a weight is independent of the length of the path; Only quantities from the vertices
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ys−1,ys,zt and zt−1 are required. This fixed amount of computations and memory require-
ments per connection will prove useful when implementing the BDPT on the GPU.

Appendix E shows how the recursive weight computations are inserted into the BDPT
algorithm.

8.2.2 Formal derivation

In this section, we will give a more formal derivation of the recursive formulation for the
power heuristic weights. Given a path X = x1...xk, let Yi be the prefix path x1...xi and Z j

be the postfix path xk...xk− j. From section 2.7 we know that the sampling probability p(X′)
for some (partial) eye or light path X′ = x1 · · ·xk equals

p
(
X′
)

=
k−1

∏
i=0

PA (xi→ xi+1) (8.8)

Furthermore, the probability p̂s (X) is the probability of sampling the path X by connecting
the eye path Ys of length s and the corresponding light path Zt of length t = k− s. This
probability equals

p̂s (X) = p(Ys) p
(
Zt)=

(
s−1

∏
i=0

PA (xi→ xi+1)

)(
k

∏
i=s+1

PA (xi+1→ xi)

)
(8.9)

Using these probabilities, the denominator for the weights equals

D(X) =
k

∑
i=0

p̂i (X)β (8.10)

Sampling probabilities

Before going on with the proof, we derive a few useful equalities related to sampling prob-
abilities. First, note that:

p(Ys) =

(
s−1

∏
i=0

PA (xi→ xi+1)

)
= p̂s (Ys) (8.11)

p
(
Zt)=

(
k

∏
i=k−t+1

PA (xi+1→ xi)

)
=

(
k

∏
i=s+1

PA (xi+1→ xi)

)
= p̂k−s

(
Zk−s

)
= p̂t

(
Zt)
(8.12)

Using these equalities, we can express the probability of sampling a bidirectional path in
terms of the eye and light paths as follows:

p̂s (X) = p(Ys) p
(
Zt)= p̂s (Ys) p̂t

(
Zt) (8.13)

It is easy to see that for some X, the probabilities p̂m(X) and p̂n(X) with m 6= n often
have common factors. Let us investigate these common factors a little further. For any
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two probabilities p̂m(X) and p̂n(X) with 0 ≤ m ≤ n ≤ k, we can write the probabilities as
follows:

p̂m (X) =
m−1

∏
i=0

PA (xi→ xi+1)
n

∏
i=m+1

PA (xi+1→ xi)
k

∏
i=n+1

PA (xi+1→ xi)

p̂n (X) =
m−1

∏
i=0

PA (xi→ xi+1)
n−1

∏
i=m

PA (xi→ xi+1)
k

∏
i=n+1

PA (xi+1→ xi)

(8.14)

We can further express these probabilities in products of probabilities on a prefix and a
postfix path.

p̂m (X) = p̂m (Ym)

(
n

∏
i=m+1

PA (xi+1→ xi)

)
p̂k−n

(
Zk−n

)
= p̂m (Yn) p̂k−n

(
Zk−n

)
= p̂m (Yn) p

(
Zk−n

)
= p̂m (Ym) p̂k−m

(
Zk−m

)
= p(Ym) p

(
Zk−m

) (8.15)

p̂n (X) = p̂m (Ym)

(
n−1

∏
i=m

PA (xi→ xi+1)

)
p̂k−n

(
Zk−n

)
= p̂n (Yn) p̂k−n

(
Zk−n

)
= p(Yn) p

(
Zk−n

)
= p̂m (Ym) p̂k−n

(
Zk−m

)
= p(Ym) p̂k−n

(
Zk−m

) (8.16)

When applying equation 8.9 to a sequence of prefix paths Yi, we can identify some
recursive relations. Note that for i > s > 1 it holds that

p̂s
(
Yi)= p̂s

(
Yi−1)PA (xi+1→ xi) (8.17)

Furthermore, from equation 8.11, it is trivial that

p
(
Yi)= p̂i

(
Yi)= p̂i−1

(
Yi−1)PA (xi−1→ xi) = p

(
Yi−1)PA (xi−1→ xi) (8.18)

Obviously, similar results hold for a sequence of postfix paths Zi.

Recursive balance heuristic

In this section, we will show how to construct D(X). We will start by showing how to
construct a related quantity D′(X) recursively on the prefix path sequence Yi. D′(X) is
defined as

D′(Yi) =
i−1

∑
j=0

p̂ j
(
Yi−1)β

(8.19)

We start with the base case; the empty prefix path Y0.

D′(Y0) = 0 (8.20)
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Turning to the general case D′(Yi) with i > 0. We can rewrite D′(Yi) using equations 8.17
and 8.18:

D′(Yi) = p̂i−1
(
Yi−1)β

+
i−2

∑
j=0

p̂ j
(
Yi−1)β

= p
(
Yi−1)β

+
i−2

∑
j=0

p̂ j
(
Yi−2)β

PA (xi→ xi−1)
β

= p
(
Yi−1)β

+D′
(
Yi−1)PA (xi→ xi−1)

β

(8.21)

We now have a recursive expression for D′(Yi). What is left is a recursive expression for
p
(
Yi)β. Using equation 8.11, this turns out to be quite trivial:

p
(
Y0)β

= 1

p
(
Yi)β = p

(
Yi−1)β

PA (xi−1→ xi)
β

(8.22)

Using these recursive definitions, we can construct D(X) in a bidirectional way. First,
let us split the path X in a prefix path Ys and postfix path Zt with t = k− s, as generated by
some bidirectional sampler.

D(X) =
k

∑
i=0

p̂i (X)β =
s−1

∑
i=0

p̂i (X)β + p̂s (X)β +
k

∑
i=s+1

p̂i (X)β (8.23)

Using equations 8.15 and 8.16, we can rewrite these terms further:

s−1

∑
i=0

p̂i (X)β = p̂t+1
(
Zt+1)β

s−1

∑
i=0

p̂i
(
Ys−1)β

= p
(
Zt)β PA (xs+1→ xs)

β D′(Ys)

k

∑
i=s+1

p̂i (X)β = p̂s+1
(
Ys+1)β

t−1

∑
i=0

p̂i
(
Zt−1)β

= p(Ys)β PA (xs→ xs+1)
β D′(Zt)

(8.24)

Using equation 8.13, we can finally rewrite D(X) into

D(X) = p
(
Zt)β PA (xs+1→ xs)

β D′(Ys)+ p(Ys)β p
(
Zt)β + p(Ys)β PA (xs→ xs+1)

β D′(Zt)
(8.25)

Now let us apply this to the bidirectional path X, constructed by connecting an eye path
Ys = y1 · · ·ys with a light path Zt = z1 · · ·zt . We define two recursive sequences pi and di:

pY
0 = p0

(
Y0)β

= 1

pY
i = pi

(
Yi)β = pY

i−1PA (yi−1→ yi)
β

(8.26)

pZ
0 = p0

(
Z0)β

= 1

pZ
i = pi

(
Zi)β = pZ

i−1PA (zi−1→ zi)
β

(8.27)
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dY
0 = D′(Y0) = 0

dY
i = D′(Yi)

= p
(
Yi−1)β

+D′
(
Yi−1)PA (yi→ yi−1)

β

= pY
i−1 +dY

i−1PA (yi→ yi−1)
β

(8.28)

dZ
0 = D′(Z0) = 0

dZ
i = D′(Zi)

= p
(
Zi−1)β

+D′
(
Zi−1)PA (zi→ zi−1)

β

= pZ
i−1 +dZ

i−1PA (zi→ zi−1)
β

(8.29)

Using these recursive quantities, we can write ps (X)β and D(X) as

ps (X) = pY
s pZ

t

D(X) = pZ
t PA (zt → ys)

β dY
s

+ pY
s pZ

t

+ pY
s PA (ys→ zt)

β dZ
t

(8.30)

Hence, we have constructed the power heuristic weight ws (X) = p̂s(X)β

D(X) .

8.2.3 Further details

In this section we will study some details and special cases of this formulation. First we will
investigate some restrictions on the method used to terminate a path during construction.
Then we will show how to handle BSDF’s containing singularities, like perfect mirrors.
Furthermore, we show that it is possible to guarantee at least one diffuse bounce on the eye
path before the path is terminated.

Path termination

In the recursive formulation of the eye path quantity dY
i , we need to evaluate the reverse

sampling probability PA (yi−1→ yi−2). At the time of evaluation, no information about the
light path is available. Therefore, this evaluation must be independent of the light path.
Similar holds for evaluating PA (zi−1→ zi−2) in dZ

i . Because of these restrictions, any sam-
pling decisions at a vertex may only depend on local information such as the incoming and
outgoing direction and the surface properties. However, it may not depend on global path
information, such as the vertex index on the path, because the light path length is not known
while evaluating these reverse probabilities. Note that the probability to terminate the path
at a vertex during construction is part of its sampling probability. Usually, Russian roulette
is used to decide termination. Because of the former restriction, the Russian roulette method
may also only depend on local vertex information and not on the global vertex index in the
path.
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Specular scattering

When dealing with specular bounces, the sampling probabilities may contain one or more
Dirac delta functions. Any vertex on such a surface is called a specular vertex. A specular
bounce is a specular vertex that is not used in the connection between light and eye path,
so it is not the endpoint of either of these paths. For every specular bounce on a path, a
Dirac delta function appears in the path probability. These Dirac delta functions can not be
evaluated directly. However, as we are only interested in the final weight function, we divide
out the Dirac delta functions from the weight’s numerator and denominator accordingly.
When, after division, there is still a Dirac delta function left in the denominator (implying
there is at least one sampling strategy with more specular bounces for this path), the weight
is forced to zero, otherwise all Dirac delta functions have vanished and the weight can be
evaluated. When a path is constructed by connecting a specular vertex to another vertex, the
alternative sampling strategy of sampling the same path using zero light vertices (omitting a
connection) always contains at least one more Dirac delta function. Therefore, the weight of
the connected path is forced to zero. Reversely, every sampling strategy in the denominator
connecting a specular vertex to another vertex (specular or not), will contribute nothing to
D(X ). These conditions must be handled explicitly:

• When trying to connect a specular vertex to another vertex, the corresponding path
weight is zero and the connection should be skipped.

• When evaluating di where either xi or xi−1 is specular, the first term of di connects a
specular vertex to another vertex and is forced to zero. So, for this special case, the
recursive relation becomes: di = dZ

i−1PA (xi→ xi−1)
β.

Note that for common camera models the probability distribution of outgoing sampling di-
rections from the eye does not contain a dirac function. Therefore, the eye is not considered
a specular vertex. This does not hold for all light sources. For example, a pure directional
light source has only a single outgoing direction, therefore its probability distribution con-
tains a dirac function and the vertex on the light source is specular.

Specular prefix path

Finally we turn our attention to an interesting special case: the first non-specular vertex yi

on an eye path. Because connecting to/from a specular vertex results in zero probability,
all sampling strategies sampling any of the preceding vertices y1 · · ·yi−1 as part of the light
path result in zero probability. Therefore, the probability PA (yi→ yi−1) is never evaluated
during light path construction. For this reason, this first diffuse vertex poses an exception
to the sampling restriction mentioned at the beginning of this section. Non-local Russian
roulette is allowed for this vertex. This is useful, because we usually like to force at least
one diffuse bounce. through similar reasoning, the light path can be forced to have at least
one edge. Whether the next vertex is specular or not does not matter, because the light
emission direction is already a diffuse ’bounce’, unless purely directional light sources are
used.
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8.3 SBDPT

8.3.1 Algorithm overview

1

2

34
5

6

Figure 8.2: Construction of an SBDPT sample. 1) Light vertex is constructed 2) Eye path
is generated and connected to light 3) Light path is extended 4) Light path is connected to
eye 5) Eye path is generated and connected to light path 6) Light path is terminated.

In the original BDPT algorithm, a single eye path and light path are generated and
connected to form a collection of light transport paths. In section 8.1, we explained why
this method is not well suited for an efficient GPU implementation. We therefore propose
to alter the BDPT algorithm to make it fit the streaming architecture of a GPU, which we
will call Streaming BDPT or SBDPT. Instead of generating a single eye path, we generate
a new eye path for each vertex on the light path. We start out with a light path containing
a single vertex on some light source. After this vertex is generated, the first eye path is
generated. During construction of the first eye path, each vertex is directly connected to the
light vertex resulting in complete light transport paths. So far the algorithm is similar to the
PT algorithm described in section 7.2, except now all vertices on the eye path connect to
the same light vertex. When the eye path terminates, the light path is extended by a single
vertex. This vertex is directly connected to the eye first, before a new eye path is generated.
The vertices on this new eye path now connect to the new endpoint of the extended light
path. This process is repeated until the light path is terminated and the SBDPT sample is
complete (See Figure 8.2). Using this method, connections are no longer made after either
of the paths is complete, but instead during the construction of the light and eye paths.
During this construction, only the endpoints of the paths are connected. Hence there is no
need to store the whole path.

8.3.2 Statistical differences

In this section we will discuss the statistical similarities and differences between BDPT and
SBDPT. First, we will show that the probability of sampling a light transport path as part
of a sample is the same for both methods except for implicit paths, which require special
handling. Further, we explain how correlation between light transport paths is reduced by
SBDPT w.r.t. BDPT. Finally, we will discuss the expected number of steps required per
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sample in both methods, showing that SBDPT requires no more than twice the number of
steps per sample required by BDPT.

Sample probability

To see that SBDPT does not differ fundamentally from BDPT, we show that the probability
of sampling a light transport path Xs,t with some bidirectional strategy s, t (connecting eye
path Ys with s vertices and light path Zt with t vertices) as part of an SBDPT sample remains
the same. The only exceptions are implicit paths (paths with t = 0), which we will handle
in the next section.

Each complete SBDPT sample contains at most one light transport path Xs,t for any
s≥ 0 and t > 0. To see this is true, remember that eye paths only connect to the endpoint of
the light path. So, there is only a single eye path connecting to the t’ light vertex, resulting
in light transport paths with t light vertices. Each vertex on this eye path only connects
once to the light path (the eye is also an eye vertex). Hence, there is only one way to
generate a path with s eye vertices and t light vertices. Going from this, it is easy to show
that the probability of sampling such a transport path has not changed. The method for
sampling a separate eye or light path has not changed, so the sample probabilities p(Ys)
and p(Zt) remain the same for SBDPT. As there is only one way of sampling Xs,t , the
corresponding probability remains simply the product of sampling the connected eye and
light paths, ps (X) = p(Ys) p(Zt), which equals the probability of generating Xs,t as part of
a BDPT sample. Therefore, the MIS formulation from the previous sections is still valid for
SBDPT.

Implicit paths

Implicit paths, or light transport paths with t = 0, require special attention. These paths are
not constructed using an explicit connection, but are found when an eye path accidentally
hits a light source. Each SDBPT sample may contain more than one eye path, so it is pos-
sible to find more than a single implicit path Xs,0 per SDBPT sample for some s > 0. A
simple solution would be to only count implicit paths found on the first eye path, discarding
all other implicit paths. Although valid, this solution wastes valuable information, espe-
cially when rendering reflected caustics (paths of the form ES+ (DS+)+ L). These effects
usually are a worst case scenario for BDPT. Implicit paths are the only bidirectional strategy
capable of finding these light transport paths. Therefore, it is undesirable to discard such
implicit paths. A better solution for handling implicit paths is to record the contribution of
all found implicit paths in a separate image, called the implicit image. All other contribu-
tions are recorded on the explicit image. These images are then combined to form the final
unbiased estimate. In this combination, we have to correct the implicit image as it overesti-
mates the contribution of implicit paths. In the original BDPT algorithm, only a single eye
path was sampled per BDPT sample, possibly finding an implicit path. In SBDPT, multiple
eye paths are sampled per SBDPT sample, so to correct for this, we have to multiply each
pixel i in the implicit image by 1

Ni
, with Ni being the number of eye paths sampled for this

pixel. The explicit image requires a usual correction for the number of SBDPT samples
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per pixel. Adding the corrected images gives an unbiased estimate without wasting implicit
path information. Compared to BDPT, the probability of sampling implicit paths as part
of an SBDPT sample is higher because more eye paths are generated. Therefore, the MIS
weights from section 8.2 are a little favored towards explicit paths. This does not introduce
any bias, but the MIS weights are no longer considered optimal. In practice, this is not
really a problem, because implicit paths usually are an inferior sampling strategy anyways,
already having very low MIS weights. As already explained, the main purpose of implicit
paths is to sample implicit caustics. However, because implicit paths are the only valid
sampling strategy for these paths, the MIS weights will remain optimal.

Correlation

Although the probabilities for generating explicit light transport paths is the same for BDPT
and SBDPT, there is a statistical difference between both methods resulting in less corre-
lation between light transport paths in SBDPT at the cost of extra algorithmic steps per
sample. In BDPT, one eye and light path is used to generate a collection of light transport
paths by connecting all vertices of both paths. This causes a lot of correlation between light
transport paths within a sample. In SBDPT, multiple eye paths are used per sample, reduc-
ing the correlation between eye paths. Still only a single light path is used per sample. To
reduce the effect of correlation between light paths, the different eye paths should sample
the complete image plane, not just the same pixel. This way, the correlation between light
transport paths is distributed over the image plane, further reducing its visibility.

Expected steps per sample

As mentioned in the previous section, a consequence of generating multiple eye paths per
sample is an increase in the expected number of algorithmic steps per sample. However we
can easily show that SBDPT on average requires no more than twice the number of steps
per sample as BDPT, where sampling a path vertex and connecting an eye and light path
both constitute one step.

For BDPT, each sample consists of a light path and an eye path. Let us say that, for some
sample, the eye path has length n and the light path has length m. Generating these paths
requires n +m steps. Then all light vertices are connected to all eye vertices, including the
eye, requiring an extra (n+1)m connection steps. Hence, a total of rbd pt = n+m+(n+1)m
steps are required for this sample.

For SBDPT, each sample generates one light path and multiple eye paths. Let us say
the light path has length m, thus m eye paths are sampled, each of length ni with i = 1 · · ·m.
Sampling these paths requires m+∑ni steps. All light vertices are connected to the eye and
all eye vertices are connected to a light vertex, requiring an extra m + ∑ni steps. Hence, a
total of rsbd pt = 2(m+∑ni) steps is used for this sample.

Let N and M be random variables representing resp. eye path and light path lengths. So
n and ni are realizations of N and m is a realization of M. As eye and light paths are sampled
independently, N and M are independent variables. Hence, E [rbd pt ] = n+m+(n+1)m and
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E [rsbd pt ] = 2(m+mn), with n = E [N] and n = E [M]. Therefore, on average an SBDPT
sample requires no more than twice the number of steps required by a BDPT sample.

8.4 GPU SBDPT

In this section, we will discuss the GPU implementation of the SBDPT algorithm. First,
we present a flowchart for generating a single SBDPT sample. Then, further details on
efficiently implementing SBDPT on the GPU are given. Finally, we will discuss the perfor-
mance of the algorithm, both in terms of speed and convergence.

8.4.1 SBDPT flowchart

In this section, we will present a flowchart for generating SBDPT samples. SBDPT can be
viewed as an extension of TPPT, described in section 7.2. Sampling a single eye path and
making connections to a light vertex remains the inner part of the SBDPT algorithm. The
method is extended to generate a light path as well. The generation of a light path is similar
to generating an eye path, with the addition that each time, right before the light path is
extended, a complete eye path is sampled. So, just before the light path is extended, a new
eye path is regenerated and only as soon as the eye path terminates is the light path actually
extended. When the light path terminates, the SBDPT sample is complete and a new sample
is started by regenerating the light path. Figure 8.3 shows the corresponding flowchart. The
flowchart combines two PT-like flowcharts (figure 7.1), one for generating light paths (left)
and one for generating eye paths (right). The eye path generation is inserted between the
light path connection and light path extension steps. Again, the flowchart is divided in two
phases: an Extend phase and a Connect phase. In the Extend phase either the eye or light
path is extended. In the Connect phase either the light path is directly connected to the
eye, or the eye path is connected to the light path. The two phases are executed repeatedly,
one after the other. Between phase execution, rays are traced. Therefore, only transitions
between processing steps in different phases may require a ray to be traced. Note that,
unlike for eye paths, generating the first light vertex does not require tracing a ray, because
the vertex is picked directly on a light source. Therefore, Regenerate Light is placed in
the Connect phase. This is advantageous because now, when no intersection is found in
Intersect Light (the light path is terminated), a new light path is generated immediately,
without having to await the next phase. Finally, a word on the transition from Extend Eye
to Extend Light; both reside in the same phase. However, for efficiency reasons explained
later, only a single extension is allowed per execution of the Extend phase. Therefore, when
Extend Eye is executed and causes a transition to Extend Light, the execution of Extend Light
must await the next Extend phase.

8.4.2 GPU implementation

In this section, we will describe the CUDA implementation in more detail. The setup is very
similar to TPPT from section 7.3. A single SBDPT sample is generated by each CUDA
thread in parallel. All threads execute the Extend and Connect phases repeatedly, one after
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Figure 8.3: GPU SBDPT flowchart. The two phases are handled iteratively one after the
other. Each time the flowchart changes phase, an optional output ray may be traced before
the next phase is started. Note that for the transition from Extend eye to Extend Light, a new
Extend phase must be awaited.

the other. During phase execution, a thread may execute all states belonging to this phase
at most once, and in a fixed order. Hence, all threads in a warp executing the same step will
follow the same code path and therefore execute in parallel using SIMT. All other threads
wait for the step execution to finish before they can proceed.

In every phase, each thread may output an optional ray that is traced before the next
phase is executed. Again, separate kernels are used for phase execution and ray traversal.
Like TPPT, ray traversal performance is increased by packing all output rays in a single
continuous ray stream using immediate packing (see section 7.4.1).

Code sharing

To achieve high SIMT efficiency, the threads in a warp must follow the same code path.
Because the lengths of eye and light paths vary between threads in a warp, usually some
threads are handling their light path while at the same time all other threads are handling
their eye paths. This would effectively result in a 50% upper bound on SIMT efficiency. To
resolve this, whenever possible, code paths for handling the light and eye path are shared.
The Explicit, Extend, Intersect and Connect processing steps are very similar for eye and
light paths, thus their code paths are shared. Collapsing these processing steps into shared
processing steps effectively gives the flowchart for the actual GPU implementation. In
figure 8.4, a simplified version of such a collapsed flowchart is shown. To prevent cluttering
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in the diagram all conditions are removed and multiple conditional arrows may start at the
same processing step. Whenever a phase is executed, the processing steps are executed in a

Extend phase

Connect phase

Regenerate Light

Connect

Implicit

Intersect

Extend

Regenerate Eye

Explicit

Figure 8.4: Simplified, collapsed GPU SBDPT thread flowchart. The code for steps Ex-
plicit, Extend, Intersect and Connect is shared for the eye and light paths, allowing for GPU
efficiency. Each Extend phase, either the eye or light path is extended. Each Connect
phase, a single connection is made between light and eye path.

fixed order (top-down in figure 8.4). As eye and light paths now share the same code paths,
SIMT efficiency is significantly increased.

Because a step is never executed twice per phase, it is not possible to both extend the
eye and light path in the same phase. Therefore, the transition from Extend Eye to Extend
Light must await the next execution of the Extend phase. To visualize this, the edge from
Extend to itself in figure 8.4 passes through the Connect phase.

Single vertex per path

As mentioned earlier, SBDPT only requires global memory storage for a single eye and
light vertex per SBDPT sample. This reduces the global memory footprint, allowing more
GPU threads to be active at once, thus increasing parallelism. Furthermore, it allows for
coalesced global memory access per warp, increasing effective memory bandwidth. The eye
and light vertices are stored separately as a structure of arrays. During Connect and Explicit,
both the eye and light vertex are needed and accessed through coalesced memory transfers.
However, during Extend and Intersect, either the light or eye vertex is needed, depending
on the path that is being extended by each thread. Figure 8.5 shows the possible memory
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access for an 8-thread warp. Because during each access to vertex data some threads access
their eye vertex while others access their light vertex, per access two coalesced memory
transfers are required. Also note that a coalesced memory transfer may load memory for
threads that do not need it, as seen in figure 8.5. In total, at least half the loaded memory is
actually used, so the effective memory bandwidth is at most halved due to accessing eye or
light vertices by different threads at the same time.

0 1 2 3 4 5 6 7

Light vertices

Eye vertices

Warp:

Figure 8.5: Memory access during Extend. Some threads in a warp extend their light path
while others extend their eye path, resulting in two coalesced transfers per warp.

In our above discussion, we have been claiming that only a single eye and light vertex is
required during SBDPT sample construction. However, an important detail was disregarded
which we will discuss now. The MIS formulation from section 8.2 suggests that at least two
vertices per eye path are required in order to evaluate PA (ys→ ys−1) during connection. Fur-
thermore, we noted that PA (xi→ xi+1) could be written as PA (xi−1→ xi→ xi+1) to make
explicit that this probability usually depends on the incoming direction. This also suggests
that an extra path vertex is required. These problems are partially solved by storing the
incoming direction with each vertex. After generating an extension direction, we now know
both the incoming and outgoing direction, so we can compute Pσ⊥ (xi−1→ xi→ xi+1) and
Pσ⊥ (xi+1→ xi→ xi−1) (note that probabilities are per unit projected solid angle!). The
same holds during connection: after the connection is set up, all probabilities for the con-
nected vertices can be computed per unit projected solid angle. What is left is the conversion
from unit projected solid angle to unit area. The key observation here is that these conver-
sion terms do not need to be computed during the same step or even the same phase as the
probability per projected unit solid angle. A single conversion term may be split up further,
computing each part when all required data is available. For example, during extension at
vertex xi, we can compute Pσ⊥ (xi−1→ xi→ xi+1), but not until the next intersection do we
know the actual vertex xi+1, allowing us to compute the conversion factor G(xi↔ xi+1).
Furthermore, during extension of xi−1, we can already compute one cosine term, required
for G(xi↔ xi−1). The square distance can computed during the next intersection step when
xi is known, while Pσ⊥ (xi→ xi−1) can not be computed until after the extension of vertex
xi. By carefully splitting up these computations so as to compute each part as soon as the
required data is available, only the last vertex on both paths is ever needed during the com-
putations. This has the added advantage of further reducing memory usage, because data
used in these computations is usually already loaded for other purposes.
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Scattered light path connections

In a normal path tracer, all light transport paths from a single sample contribute to the
same pixel. This is no longer true for a BDPT. Each time when a light vertex is connected
directly to the eye, the path may contribute to any pixel on the image plane. This poses
a problem because multiple, parallel running threads may try to contribute energy to the
same pixel. We solved this problem by using atomics when recording energy on the image
plane. Because CUDA did not support floating point atomics until GPU architecture 2.0,
all data is stored in a fixed point integer format and integer atomics are used to contribute
energy. Our experiments showed that the usage of atomics did not significantly influence
performance. Obviously, performance would suffer when most contributions were made to
only a few pixels, but this is very unlikely in practice (and if it happens, it is probably not a
very interesting rendering).

Light path sharing

Connecting a complete eye path to a single light vertex causes correlation between light
transport paths. This correlation can be reduced by sharing light vertices between threads
in a warp. Each time a thread tries to connect an eye vertex to a light vertex, it connects
the eye vertex to the light vertex of any of the other threads in the warp trying to make
a similar connection. It is important to exclude any threads that do not try to make such
a connection to keep the method unbiased. This method generally reduces correlation, at
the cost of reduced stratification in sampling strategies contributing to each pixel. Note that
applying this method to light paths directly connecting to the eye would increase correlation;
Whenever a light path would connect with the eye path of a thread without an eye path
(terminated and not yet regenerated), the light path would be directly connected to the eye.
If this happened twice for the same light vertex, exactly the same light transport path would
be generated twice, significantly increasing visible noise. We want each light vertex to be
connected to the eye exactly once. Therefore, threads directly connecting a light vertex to
the eye are excluded from light vertex sharing.

Now, all that is needed is a method for sharing vertices, excluding threads that do not
want to participate. Using a parallel prefix sum, all participating threads can determine the
number of participating threads preceding this thread (incl. itself) in the warp, called ni for
thread i, and the total number of participants n. Then, each participating thread i writes
its thread ID i in a shared buffer at location ni. Finally, each participating thread picks a
thread index j from any of the valid locations in the shared buffer. The participating thread
i then connects to the light vertex of this selected thread j. A good method for selecting a
location in the buffer is for each thread to use its own ni plus some fixed stride as a cyclic
buffer location, causing each participating thread to be picked exactly once. The shared
stride should be incremented each time the connect phase is started, thereby stratifying the
sharing of light vertices between threads. Listing 8.1 shows a small code snippet showing
for selecting a participating thread to connect to. Note that his method only applies to
devices with compute capability 1.2 or higher. On older devices, sharing light vertices
would prevent coalesced memory access when loading light vertices.
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device constant int c stride ;

device int get light vertex idx ( bool participate )
{

shared volatile int s n ;
shared volatile int s location buffer [32];

// inclusive prefix sum over warp participants
int n i = PREFIX SUM( participate? 1: 0 );

// store total participants
if ( threadIdx .x == 31 ) s n = n i ;

if ( participate )
{

// load total participants
int n = s n ;
// share location
s location buffer [ n i − 1] = threadIdx .x;

// get connection thread
return s location buffer [( n i+ c stride ) % n];

}
return threadIdx .x;

}
Listing 8.1: Code snippet for selecting a light vertex during light path sharing

Sample stream compaction

We did not apply sampler stream compaction to the SBDPT algorithm, as we did with the
PT algorithm in chapter 2.4. Sampler stream compaction could further increase the perfor-
mance of the SBDPT method. An SBDPT sampler requires significantly more persistent
local storage than a PT sampler because the SBDPT must store two path vertices, including
some extra temporary values for MIS weight construction. Therefore, packing the SBDPT
sampler stream would require a lot of extra data copying. However, most of this data is
loaded during extension and connection anyway. Note from section 8.4.2 that although
only one of the two vertices is actually needed by the sampler, the hardware usually ac-
cesses both vertices due to coalesced memory transactions, so not much extra data access is
required for stream compaction.

An important difference between the PT sampler and the SBDPT sampler is that the PT
sampler is terminated as soon as the eye path is terminated, while the SBDPT sampler is
only terminated after the light path has been terminated. So, when an eye path is terminated,
the samplers light path vertex must persist. To accomplish this, the samplers’ output stream
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could be divided in three parts. All samplers whose eye and light paths did not terminate
are packed at the beginning of the output stream, similar to the SSPT method. All samplers
whose eye path is terminated but whose light path has not yet been terminated, are packed
at the very end of the buffer. The size of the gap in the middle, between the samplers at the
beginning and the end of the stream, equals the number of samplers having their light path
terminated.

Now, all samplers at the beginning of the stream need to extend their eye paths, all
samplers at the end of the stream need to extend their light paths and all samplers in the
middle need to regenerate their light path. After the next Extend iteration, all samplers that
extended their light path and have not terminated now need to regenerate their eye path.
Because all terminated samplers are removed from the stream, these samplers still form a
continuous part in the stream. Hence, the regenerated primary rays will be traced together,
resulting in improved ray tracing performance due to primary ray coherence.

Note that splitting the output stream like this will also increase the SIMT efficiency
during explicit connection construction, because all samplers that connect a light path to the
eye will be at one end of the stream while all samplers connecting an eye path to a light path
will be at the other end. Therefore, all samplers in a warp are more likely to take similar
code paths.

We expect that this method will increase SIMT efficiency of the various phases, similar
to the SSPT method. Furthermore, we expect an increase in performance due to primary
ray coherence. We leave the implementation of sampler stream compaction for SBDPT to
further research.

8.4.3 Results

In this section we present the results of our SBDPT implementation. We start by assessing
the SIMT efficiency of the method, followed by some performance results.

Efficiency

Table 8.1 shows the efficiency and occurrence of the algorithmic steps in the SBDPT algo-
rithm (see section 7.5.1 for an explanation of efficiency and occurrence). Because eye and
light path regeneration must be handled separately, often requiring algorithmic steps to be
skipped by a sampler, efficiency is significantly lower compared to the PT methods from
the last chapter. Still, the efficiency for most steps is reasonable, allowing for good SIMT
efficiency and corresponding GPU performance. The most notable exception is the Regen-
erate Light step, responsible for regenerating the light path. Because multiple eye paths
may be generated before the light path is terminated, light paths are regenerated much less
often than eye paths. Therefore, this step has a very low efficiency. Luckily, regenerating
light paths is not very complicated and does not require a lot of computations. Therefore,
performance is not degraded too much by this lack of efficiency.
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Performance

As expected from the reduced SIMT efficiency, the SBDPT performance is lower than that
of the PT methods from last chapter. Figure 8.6 shows the SBPT performance in rays and
SBDPT sampler per second with and without output ray packing. Note that, in contrast to
the TPPT method from last chapter, packing output rays causes a much more significant in-
crease in performance. This is because creating bidirectional connections failes more often
then creating explicit connections in PT1, resulting in more gaps in the output ray stream.
Removing those gaps through packing increases connection ray traversal performance sig-
nificantly.

The overall performance in rays per second is significantly less than for the TPPT and
SSPT methods. Besides reduced SIMT efficiency, there are several reasons for this perfor-
mance reduction. First, while PT connection rays usually show some degree of coherence
because all connections end in a few light sources, bidirectional connection rays are very
divergent and therefore have lower ray traversal performance. Furthermore, the SBDPT
sampler is much more complex than the PT sampler, requiring much more computations
and memory accesses due to MIS weight construction. This decreases the sampler perfor-
mance further. The increase in sampler complexity is made visible in figure 8.7, showing
a time partition for the phases in an SBDPT iteration. Compared to the PT methods, the
SBDPT sampler advancing phases take up a much more significant part of the total iteration
time, with an average of 37%. This is almost twice that of the PT samplers.

As shown in table 8.2, the SBDPT requires significantly more memory because it has to
store both a light and eye path vertex per sampler, including some auxiliary terms used for
MIS computations. Still, the memory footprint remains acceptable, allowing for reasonably
sized stream sizes on current generation GPU’s.

1The light source is often placed outside the scene, directed towards the scene. Therefore, eye vertices
seldom lie behind a light source, which would cause an explicit connection to fail. Because light vertices
do necessarily lie on the light source in BDPT but may lie anywhere in the scene, this no longer holds and
connections are more likely to fail.

Results
Explicit Regen Eye Extend Intersect Implicit Regen Light Connect
Ef Oc Ef Oc Ef Oc Ef Oc Ef Oc Ef Oc Ef Oc

SPONZA 32 100 24 100 75 100 65 100 48 100 9 94 73 98
SIBENIK 36 100 24 100 75 99 66 100 49 100 9 97 74 100

STANFORD 29 100 19 100 80 99 73 100 58 100 7 94 78 100
FAIRY FOREST 37 100 29 100 70 99 74 100 41 100 19 100 70 100

GLASS EGG 37 100 25 100 74 100 67 100 48 100 9 92 74 98
INVISIBLE DATE 36 100 24 100 75 100 66 100 50 100 8 92 75 98

CONFERENCE 37 100 25 100 74 100 66 100 49 100 9 92 74 98

Table 8.1: SIMT efficiency and occurrence of algorithm steps in an average SBDPT itera-
tion.
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Figure 8.6: General SBDPT performance in rays and SBDPT samples per second without
and with output ray stream compaction.
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Convergence

Although SSPT reaches higher performance in terms of rays per second compared to SB-
DPT, SBDPT makes up for this through reduced variance in the image estimate. Especially
for scenes with many complex materials and much indirect light, BDPT often performs
much better than PT. Figure 8.8 shows that this also holds for our SBDPT implementation.
The upper image is computed using SSPT while the lower image was computed with SB-
DPT. Both images took 5 seconds to render. Note that PT has a very hard time rendering
this scene. The reason is that both light sources are covered by glass plates, so the whole
scene is lit by caustics. The figure shows that SBDPT is much better at capturing these light
effects than SSPT. Note however that there is still some high frequency noise in the glass
egg. As explained earlier, this is because BDPT has a hard time sampling reflected caustics.
These paths are sampled through implicit eye paths with low probability. This property is
inherited by SBDPT, although its effects are somewhat reduced because the SBDPT algo-
rithm generates more eye paths per sample than standard BDPT, effectively increasing the
probability of finding the reflected caustics.

Figure 8.9 shows the contributions of some of the bidirectional sampling strategies to the
final image. As expected, these images show that MIS causes different sampling strategies
to sample different light effects2. The results from this section show that the high perfor-
mance of the PT method often cannot compensate for the increased variance compared to
BDPT. Therefore, SBDPT is a valuable alternative to SSPT for scenes with complex illu-
mination. In the next chapter we will go on and implement an ERPT sampler on the GPU,
even further reducing variance for certain difficult illumination effects.

2For these images, the GLASS EGG scene was altered by removing the glass plates covering the light
sources in order to shorten the average path length. Results are similar for the original scene, but because of the
glass plates, the images on the first two rows in the image pyramid have no contribution.

Memory usage per 256 warps 3328 Kb

Table 8.2: SBDPT Memory usage for sampler and ray storage per 256 warps.
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(a)

(b)

Figure 8.8: Comparison between SSPT (a) and SBDPT (b). Images are 512×512 and both
took 5 seconds to render.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k) (l)

Figure 8.9: Contributions of various bidirectional strategies. Rows represent path lengths,
starting with length 3; columns represents the number of vertices sampled on the light path,
starting left with 0 light path vertices. Notice how different strategies sample different light
effects.
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Chapter 9

Energy Redistribution Path Tracer
(ERPT)

9.1 Introduction

In this chapter we will present our GPU ERPT implementation. We will start by studying
the characteristics of the ERPT mutation strategy using the concept of mutation features.
We will then propose an improvement mutation strategy, which we used in our implemen-
tation. Next, we will describe the workings of a single ERPT sampler and discuss our GPU
implementation. Finally, we will present our findings.

9.2 ERPT mutation

9.2.1 Mutation features

In this section we will introduce the notion of mutation features and their relation to ERPT.
Simply put, for a given scene and mutation strategy, a mutation feature is a set of paths all
reachable from one another by finite length mutation chains. More formally, for a given
path space Ω, measurement contribution function f : Ω→ R and mutation strategy with
tentative transition function T : Ω×Ω→ R, we will give a partition of Ω into a unique
feature set F .

Singularity constraint

For ease of presentation, we impose a singularity constraint on the tentative transition func-
tion: For each X,Y ∈ Ω with f (X) > 0 and T (X|Y) > 0, we assume T (X|Y)

f (X) ∈ (0,∞). In
the context of light transport, this practically means that f (X) must contain equally many
non-zero Dirac functions as the tentative transition function T (X|Y). In the context of
importance sampling (section 2.5), we saw that to effectively sample specular lighting ef-
fects, the sampling probability distribution must contain Dirac delta functions centered at
the same positions on the domain as the Dirac delta functions in the measurement contribu-
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tion function. This applies equally to the mutation probability distributions. Therefore, this
condition is not overly restrictive and is satisfied by any practical mutation strategy.

Reachable relation

To define a feature, we will first define the binary reachable relation on path space. For a
given scene and mutation strategy, a path Y is reachable from X if there is some finite mu-
tation chain, starting at X and ending at Y, having strictly positive acceptance probabilities.

Definition 9.2.1. For a given Ω, f : Ω→ R and T : Ω×Ω→ R, Y ∈ Ω is reachable from
X ∈ Ω with f (X) > 0 iff there is some finite sequence Z0 · · ·Zn,Zi ∈ Ω with n≥ 2, Z0 = X,
Zn = Y, T (Zi+1|Zi) > 0 and a(Zi+1|Zi) > 0 for all 0≤ i < n. We will refer to such a sequence
as a mutation chain from X to Y. The reachable relation is not defined when f (X) = 0.

Lemma 9.2.1. For any mutation chain Z0 . . .Zn from X to Y with Y reachable from X, it
holds that f (Zi) > 0 for all i.

Proof 9.2.1. By definition, f (X) > 0. Assume f (Z j) = 0 for some 0 < j < n, then there
must also be some 0 < i ≤ j with f (Zi−1) > 0 and f (Zi) = 0. By definition, a(Zi|Zi−1) =
min

(
1, f (Zi)T (Zi−1|Zi)

f (Zi−1)T (Zi|Zi−1)

)
> 0. However, because T (Zi|Zi−1) > 0 for the mutation chain to

be valid and either T (Zi−1|Zi) = 0 or T (Zi−1|Zi)
f (Zi−1)

∈ [0,∞) due to the singularity constraint,
the acceptance a(Zi|Zi−1) = 0, so by contradiction, f (Zi) > 0 for all i.

Using this, we can prove that the reachable relation is both symmetric and transitive.

Lemma 9.2.2. The reachable relation is symmetric.

Proof 9.2.2. Assume there are some X,Y ∈ Ω with Y reachable from X through mutation
chain C = Z0 · · ·Zn, but with X not reachable from Y. For this to be true, Zn · · ·Z0 must
not be a valid mutation chain from Y to X, so there is at least one 0 ≤ i < n with either
T (Zi|Zi+1) = 0 or a(Zi|Zi+1) = 0.

We claim that T (Zi|Zi+1) = 0 can never be. To see this, remember that f (Zi+1) > 0 and
T (Zi+1|Zi) > 0, implying f (Zi+1)

T (Zi+1|Zi)
∈ (0,∞). Furthermore, f (Zi) > 0, so it must be true that

T (Zi|Zi+1) > 0 for a(Zi+1|Zi) > 0 to hold.
Going from here, we reason that a(Zi|Zi+1)= 0 implies T (Zi+1|Zi)= 0: Assume a(Zi|Zi+1)=

0 and T (Zi+1|Zi) > 0. From the singularity constraint and f (Zi+1) > 0, we then have that
f (Zi+1)

T (Zi+1|Zi)
∈ (0,∞). Furthermore, we established that T (Zi|Zi+1) > 0 and f (Zi) > 0, implying

that f (Zi)
T (Zi|Zi+1)

∈ (0,∞). Hence, a(Zi|Zi+1) > 0, contradicting the initial assumption.
Because T (Zi+1|Zi) > 0 must hold for C to be a valid mutation chain from X to Y,

a(Zi|Zi+1) > 0 must also hold. Hence, Zn · · ·Z0 is a valid mutation chain from Y to X.

Lemma 9.2.3. The reachable relation is transitive.

Proof 9.2.3. For some X,Y,Z∈Ω with Y reachable from X, Z reachable from Y, V0 . . .Vn a
mutation chain from X to Y and W0 · · ·Wm a mutation chain from Y to Z. The concatenated
sequence V0 . . .VnW0 · · ·Wm forms a mutation chain from X to Z. Hence, Z is reachable
from X.
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Feature partition

Using the reachable relation, we define a feature Φ as follows:

Definition 9.2.2. A feature Φ⊆Ω is a subset satisfying that for any X ∈ Φ, f (X) > 0 and
for any X,Y ∈Ω with X ∈Φ, Y ∈Φ iff Y is reachable from X.

Lemma 9.2.4. For each X ∈Ω with f (X) > 0, there exists one unique feature Φ⊆Ω with
X ∈Φ.

Proof 9.2.4. Take Φ as the set of X and all Y∈Ω with Y reachable from X. By the symmetry
and transitivity of the reachable relation, this also means that for any Y ∈Φ, Φ contains all
Z ∈Ω that are reachable from Y and that any Z ∈Φ is reachable from Y. Hence, the subset
Φ is a feature containing X. To see that this feature is unique, assume X belongs to two
distinct features, Φ and Φ′. Then, by the transitivity of the reachable relation, any element
in Φ is reachable from any element in Φ′ via X and visa versa. Hence, from the definition
of features it follows that Φ = Φ′.

Theorem 9.2.1. There exists a unique feature set F of non-empty features in Ω that forms
a partition of the set {X ∈Ω| f (X) > 0}.

Proof 9.2.5. Let SΦ (X) be the unique feature corresponding to X ∈ Ω with f (X) > 0. It
follows from lemma 9.2.4 that for F to be a partition of {X ∈Ω| f (X) > 0}, F must contain
{SΦ (X) |X ∈Ω, f (X) > 0}. Any other feature Φ 6∈ F must be empty. If such a feature would
not be empty but contain some path X ∈ Ω, then by definition f (X) > 0 and according to
lemma 9.2.4, Φ = SΦ (X), contradicting that Φ 6∈ F.

By adding a special null-feature Φ /0 = {X ∈Ω| f (X) = 0}, we obtain a partition F
⋃
{Φ /0}

for Ω. Whether the number of features in F is finite depends on the scene and mutation
strategy used.

The energy E(Φ) for some feature Φ is the amount of energy reaching the eye over
paths in Φ and equals E(Φ) =

∫
Φ

f (X)dΩ(X).

ERPT features

In Metropolis sampling, a mutation chain is a Markov chain of paths, constructed through
iterative mutation. Hence, each path in the chain must be reachable from the first path in the
chain. Therefore, each chain can explore only a single mutation feature. We saw in section
2.8 that to satisfy ergodicity in Metropolis Light Transport, it is sufficient to ensure that
T (X|Y) > 0 for any X,Y ∈ Ω with f (X) > 0 and f (Y) > 0. This means that for any such
X and Y, Y is reachable from X. Hence, besides the null feature, there is at most a single
non-empty feature containing all paths X with f (X) > 0. In ERPT however, ergodicity is
achieved by using path tracing to generate new mutation chains, thus the mutation strategy
itself does not have to satisfy ergodicity. In case ergodicity is not satisfied by the mutation
strategy, there may be many (possibly infinite) features, depending on the scene. The type
of features within a scene determines the types of errors visible in the final rendering. In
the next section, we will study this further in the context of the ERPT mutation strategies as
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proposed in the original ERPT paper. Remember that these errors are a form of noise; the
image remains unbiased.

9.2.2 ERPT mutation strategy

Remember from section 2.10 that the mutation chain length N should be neither too small
nor too large. When N becomes too small, energy redistribution becomes less effective
and ERPT deteriorates into quantized PT. We would therefore like to choose N as large as
possible. However, as explained in the last section, each mutation chain can only explore
a single mutation feature. All N mutations in the chain will lie within this single mutation
feature. Having large N can therefore result in noticeable artifacts. In this section, we will
study these artifacts using the notion of mutation features. To emphasize the artifacts in our
experiments, we used an N in the order of 10001.

Feature exploration

Probably the most noticeable error in ERPT images due to features is that light effects may
be completely absent, even when a significant number of ERPT samples is generated. In a
progressive ERPT, it seems that a light effect may be absent for a long time until at some
point, it seems to be found almost instantly. This is a direct consequence of the fact that
a mutation chain can only explore a single feature. So, as long as no mutation chain is
generated for a certain feature, the feature will be completely absent in the image. This
effect becomes more pronounced when the path tracer does a bad job at sampling initial
mutation chain paths proportional to their energy. It may take many samples before an
initial path is generated in some feature, but when it is, mutation chains are generated for
this initial path with high probability, effectively exploring the feature. This causes the
feature to appear instantly. Good examples are small highlights on refractive objects. Due to
importance sampling, the probability of refraction is often much higher than for reflection.
However, when the reflected paths directly hit a bright light source, they result in a very
high energy feature. Hence, this is a distinctly visible feature but it may take a while for it
to be found. A similar example is a caustic as seen through a mirror. In general, path tracers
have a hard time finding these types of paths while they tend to carry a lot of energy.

Feature shape

In the last section, we saw that because each mutation chain only explores a single feature,
features may be absent in the final rendering. We will now focus on how a mutation chain
explores a feature. This is largely determined by the feature’s shape. To see the influence of
feature shape on error, take a look at figure 9.1(a). The figure shows a feature containing a
path leaving the eye and reaching the light source through one diffuse bounce. The complete
feature obtained using lens mutations is shown in yellow. It consists of all paths of length 2,

1When using N in the order of 100, these artifacts are already recognizable and significantly weaken the
ERPT algorithm. In [11] the authors propose a special post processing filter to reduce these artifacts, causing
extra bias in the estimate.
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ending at the same point on the light source. When applying the lens mutation, mutations
are generated by perturbing the primary ray and connecting the new intersection point to the
light source. However, because the feature is so small, most perturbations will miss the top
of the small object and fail. When a mutation fails, the mutation chain remains at its current
path. This causes the chain to get stuck on the same path for many mutations resulting in
increased noise in the image. In this example, the main cause is that the average mutation
perturbation size is relatively large compared to the size of the feature that is being explored,
causing most mutations to fail. Hence, if perturbations are too large, small features will be
extra noisy.

(a) When a feature is small w.r.t. the pertur-
bation size, most mutations will fail.

(b) Mutating only a part of the path causes high correlation
between mutations.

Figure 9.1: The shape of a feature can cause noise and visible artifacts.

Another property of lens mutations is that for explicit light transport paths, the last
vertices on the path are never mutated. The lens mutation always mutates the least amount of
vertices, starting from the eye, and makes an explicit connection with a vertex on the original
path to complete the mutation. This results in a lot of correlation between mutations, as all
mutations in such a mutation chain share the last path vertices (see figure 9.1(b)). Figure
9.2(a) gives an example of this in the Sponza scene. As you can see, instead of soft area-light
shadows, one gets multiple sharp shadows on the floors and walls. The effect looks a bit
like a rendering using a few Virtual Point Lights (VPL) to approximate global illumination
by point lights [32]. This is exactly what happens: during each mutation, only the first
vertex from the eye (excluding the eye itself) is perturbed, so the second vertex becomes a
shared VPL for all paths in the mutation chain. A similar effect appears when the caustic
mutation is used (see figure 9.2(b)); All mutations in the mutation chain share the same light
vertex, so instead of a single uniform caustic caused by one large area-light, there seem to
be multiple caustics from multiple point lights.

Feature energy distribution

In the previous paragraph we saw that small features can cause extra noise and correlation
between samples. This however does not mean that large, well shaped features cause less
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(a) (b)

Figure 9.2: High correlation between mutations in a mutation chain cause distinct errors. (a)
Correlation between lens mutations cause sharp shadows. (b) Correlation between caustic
mutations cause splotchy caustics.

apparent errors in the final image. The type of visible errors also depend on the distribution
of energy within the feature. For example, a local optimum in the energy distribution of
a feature results in a small region within the feature that is easy to find through mutations
but hard to escape. An important example of this are paths in corners (see figure 9.3). The
shown feature is relatively large thus most mutations will result in valid light transport paths.
However, the energy is very unevenly distributed over the feature. The further the first path
vertex lies from the second vertex, the smaller will be the energy flowing over this path. This
is mainly due to the cosine term in the rendering equation on the angle between the normal
of the horizontal surface and the connection edge. A consequence is a local optimum in the
energy distribution around the unconnected path (unbroken line) in figure 9.3. Therefore,
mutation chains will tend to mutate towards this local optimum and will have a hard time
escaping the corner. Actually, the real problem here is not the local optimum within the
feature, but the fact that the total energy of the feature is quite small. Each mutation chain
has a fixed amount of energy to redistribute. All this energy will be distributed over paths
within a single feature. If the total feature energy is very small, the probability of generating
a mutation chain for this feature is also small, but if one is generated, all chain energy is
distributed over this low energy feature. If many low energy features are present in the
scene, the result is that only a few such features appear in the image, but they will seem to
be oversampled and too bright. In the example case, this becomes visible as bright splotchy
errors in corners. Figure 9.4 shows an example of such errors. This shows that not only the
size of the features, but also the energy distribution within the features determines the kind
of errors in the resulting image.
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Figure 9.3: Mutations have a hard time escaping small corners due to a local optimum in
mutation acceptance probabilities.

Figure 9.4: Splotchy errors in the corners due to low energy feature.

Image space feature

We use ERPT to compute an image, so it seems natural to look at feature properties in image
space. The feature energy E(Φ) is the amount of energy reaching the image plane along
the feature paths. This energy is distributed over the pixels in the image plane. However,
a feature does not contribute equally to all image pixels. The image space contribution of
a feature is defined by the distribution of feature energy over the image plane. Let us say
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that Ii(Φ) is the energy contribution to pixel i from all paths in feature Φ. We can now for
example define the size of a feature in image space as |{i|Ii(Φ) > 0}|; the number of pixels
this feature contributes energy to. Most of the feature characteristics described in previous
sections apply directly to image space. When an feature is only a few pixels in size or its
distribution is very uneven, contributing mostly to a few pixels, most of the mutation chain
energy is distributed over these few pixels. Furthermore, when the feature’s image space
size is small, the probability of finding initial mutation chain paths for a feature through path
tracing decreases because only a few path tracing samples are generated per pixel. This can
cause a large increase in noise as by chance, some small features are explored exhaustively
while others are completely ignored. Complex caustic paths form a good example. Caustic
paths are hard to find through path tracing and the corresponding features are often small
and complex in shape. This results in low probability mutation chains contributing to one
or two pixels. These chains appear as bright speckles on the image plane.

9.2.3 Mutation improvements

As we will see later, to achieve high GPU efficiency the GPU implementation of ERPT uses
many mutations per initial path to explore a feature. To reduce artifacts caused by small
features, we use an improved mutation strategy, significantly increasing the average feature
size.

First of all, as already suggested in the original presentation of ERPT [11], we mix the
lens and caustics mutations whenever possible. Some features are better sampled using
one or the other, but in our experience, it is not completely evident when to use which.
Furthermore, using both mutation types together can only increase feature sizes, which it
often does with success.

The second, more important extension is, instead of always mutating the least amount of
path vertices, to determine the number of path vertices to mutate using Russian roulette. We
start with mutating the least number of path vertices, just like the original mutation strategy,
and repeatedly use Russian roulette to determine whether more path vertices require mutat-
ing. For lens mutations, this means that we start by mutating the primary ray and propagate
these mutations until either the whole path is mutated, or a vertex is reached that may be
connected directly to the next path vertex on the original path. In the last case, instead of
immediately making an explicit connection, we use Russian roulette to determine whether
to stop here and make a connection or go on mutating more path vertices. This process is
repeated until either Russian roulette terminates the mutation or the whole path is mutated.
In the last case, the light vertex itself is also mutated and no explicit connection is made.

A similar method is used for caustic mutations. Because caustic mutations are no longer
only used to sample caustics, we refer to them as light mutations, as they mutate the path
backwards from the light towards the eye. Because light mutations mutate backwards, we
first need to determine where to start the mutation before the vertices are actually mutated.
Except for the first path vertex, each diffuse vertex on the path is a candidate to start the
light mutation. We start with the first candidate along the path as seen from the eye. We
again use Russian roulette to determine whether to stop and use this candidate or go on to
the next. When we reach the light source, the last path vertex is automatically used. When
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a mutation vertex is selected, the light mutation is constructed, starting from this selected
vertex and going backwards, mutating all path vertices until the first path vertex is mutated
and connected to the eye.

Note that for both mutation strategies, the original strategy is a special case of our
improved strategy, having a termination probability of 1 during Russian roulette.

Finally, we mixed the original lens mutation with the lens mutation strategy proposed
by Lai [57]. Whenever the current vertex on a mutated path is diffuse while the next vertex
is specular, one of these strategies is chosen at random and used to extend the mutation.
When the original strategy is chosen, the outgoing direction is perturbed and the mutation
is extended. When Lai’s mutation strategy is chosen, the current path vertex is directly con-
nected to the next specular vertex on the original path and the mutation is extended. Finding
small mutations for complex paths is often easier when making such explicit connections to
specular vertices.

These improvements increase the feature size at the cost of a small increase in the re-
quired number of traversed rays per mutation. Due to Russian roulette, the probability of
mutating n path vertices roughly decreases exponentially with n, therefore we expect that
the average number of traversed rays per mutation will only increase slightly. To give a sim-
ple example: in a closed indoor scene with only diffuse materials and a mutation Russian
roulette probability of 1

2 , the expected number of traversed rays per mutation is bounded by
2+∑

1
2n = 3 when using mutation Russian roulette, only a single ray more compared to not

using Russian roulette. We expect this to be a reasonable upper bound for most practical
scenes. In section 9.3.4, we will measure the increase in traversed rays per mutation for a
few well known scenes, confirming our expected upper bound.

Many of the problems with mutations discussed in this section are significantly reduced
by using Russian roulette to determine mutation length. Because all path vertices are mu-
tated with non-zero probability, the feature sizes are significantly increased. At the same
time, most mutations only mutate the first few path vertices, which keeps the average sam-
pling cost low and is useful for exploring small features. During lens mutations, all vertices,
including the light vertex, may be mutated. Therefore, the aforementioned problems due to
correlation between light vertices such as sharp shadows and splotchy caustics are signifi-
cantly reduced. Note that light mutations are always mixed with lens mutation, so although
light mutations never mutate the light vertex, the last path vertex for such paths may be mu-
tated during lens mutations. Finally, because the second path vertex may be mutated, paths
are no longer trapped in small corners, removing the splotchy errors in corners. See figure
9.5 for a comparison between the original and improved mutation strategy. As you can
see, most problems with the original mutation strategy have vanished or are significantly
reduced. Our improved mutation strategy trades structural noise for more uniform noise.
This is most visible in figure 9.5(b), where noise appears to have increased compared to
figure 9.5(a). Appearances are however deceiving; the noise in figure 9.5(a) is much more
structural and is perceived as artifacts instead of noise. Remember however that statistically
speaking, these artifacts are still unbiased noise.

We expect that the mutation strategy may be further improved by incorporating ideas
from Kelemen [31]. As we will see later, our GPU ERPT implementation requires all paths
in a mutation chain to be of the same length in order to achieve high parallelism. The mu-
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(a) (b)

(c) (d)

(e) (f)

Figure 9.5: Original mutation strategy (a),(c),(e) vs. Improved mutation strategy (b),(d),(f).
Computation times were similar for both strategies. Our improvement trades structural
noise for more uniform noise, reducing visible artifacts.

tation strategy proposed by Kelemen also mutate the length of the path. Therefore, it is
not trivial to efficiently implement the mutation strategy from Kelemen on the GPU. How-
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ever, by letting the perturbation size for the outgoing direction of a vertex depend on the
incoming direction and the local BSDF of a vertex, the acceptance probability may be fur-
ther increased. This seems especially beneficial for near-specular materials. Furthermore,
in our implementation a specular vertex must remain specular after mutation. This results
in smaller features, especially when complex caustics are present. Dropping this constraint
will increase feature size even further, reducing speckles which are caused by difficult caus-
tic features.

9.2.4 Filter

For most mutation strategies, including ours, it is unavoidable that some scenes will contain
high energy features with a small image space size. As discussed earlier, this may result
in high energy speckles. One cause of speckles that is hard to completely prevent is that
of floating point imprecisions. For example, in most ray tracing implementations, it is pos-
sible (although unlikely) for a ray to pass through two triangles at their connecting edge
due to arithmatic imprecisions in the intersection computations. If the energy on such a
path is redistributed, this may result in a feature consisting of only a single path causing a
one-pixel sized speckle. In the original ERPT paper, consecutive sample filtering is used to
solve this problem. The consecutive sample filter prevents a mutation chain from getting
stuck to long at the same pixel. If it has been stuck at the same pixel for some fixed num-
ber of consecutive mutations, the mutation chain will stop contributing energy until it has
moved away from the pixel. This filter reduces speckles, but makes the sampling method
irreversibly biased. We use a simple post-processing filter to remove speckles. We compute
an unbiased (progressive) ERPT image, and remove speckles if necessary. For each pixel,
the filter works on a region of nearby pixels 2. First, we compute the color intensity average
and variance within the region. If the distance between the pixel’s intensity and the region’s
average is at least twice the region’s variance, the pixel belongs to a speckle and is ignored.
Instead, the region’s average color is used.

9.3 GPU ERPT

9.3.1 Overview

In this section, we start with a short overview of our GPU ERPT implementation. The
ERPT implementation is an extension of the TPPT implementation from chapter 7. Besides
path tracing, an ERPT sampler also performs energy redistribution. Whenever a sampler
finds a light transport path during path tracing, its energy is redistributed using a multiple
of 32 mutation chains running in parallel. ERPT samplers are run in groups of 32 samplers.
Each group maps to one GPU warp. During path tracing, each thread runs its own sampler,
similar to the TPPT implementation. However, during energy redistribution, all threads in
a warp work together on a single sampler from the sampler group, all other samplers in the
group are temporarily suspended until energy redistribution for the one sampler is complete.

2The region size depends on the maximum speckle size we want to remove. We used a region of 3× 3
pixels around each pixel.
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To allow high SIMT parallelism, all threads in a warp follow the same code path. All
warps initially start path tracing. Whenever any thread in a warp completes a light transport
path, path tracing is suspended and the path is distributed to all threads in that warp. The
threads start redistributing the path’s energy in parallel. During a mutation, mutation type
selection and Russian roulette choices are shared between threads in a warp, causing all
threads to simultaneously mutate the same path vertices. This allows for high SIMT effi-
ciency and coalesced memory access. When energy redistribution for the path is finished,
the warp resumes path tracing.

In the following section, we will discuss our ERPT sampler. The GPU implementation
is discussed in section 9.3.3. Finally, in section 9.3.4, we will discuss the results of our
implementation.

9.3.2 ERPT sampler

In this section, we present the ERPT sampler. The ERPT sampler is an extension of the
TPPT sampler. The flowchart for the sampler is shown in figure 9.6. It consists of a path
tracing sub chart(left) and a mutation subroutine(right). The path tracing sub chart looks
very similar to the TPPT flowchart in figure 7.1, with a few changes. Most noticeable are
the invocations of the mutate routine; each time a light transport path is constructed, the
mutate routine is executed to redistribute the paths energy. Complete light transport paths
may be found during the explicit and implicit steps, so these steps are immediately followed
by the mutate routine.

Another change is the merging of the extend and generate steps. Furthermore, the
transitions from intersect to regenerate and from connect to extend are removed. All steps
are executed in a cycle without any shortcuts. Whenever a step in the cycle is not applicable
to a sampler (for example, the explicit step is inapplicable when no connection was made),
the step is ignored. This setup has the advantage that the sampler flowchart more closely
resembles a GPU thread’s control flow. We will discuss this further in section 9.3.3. Note
that the flowchart is no longer divided in two phases. Each transition that possibly requires
ray tracing is indicated by a double bar through the transition. Like TPPT, the ERPT sampler
uses sample regeneration after a sample is complete.

Mutation routine

Now let us turn to the mutate routine. Whenever a sampler finds some light transport
path X, the mutation routine distributes its energy using mutation chains. Mutation chains
are generated in batches of 32 chains. Remember from section 2.10 that the number of
chains numChains for a light transport path X depends on the path energy f (X) and equals
numChains =

⌊
U(0,1)+ 1

N×ed

f (X)
p(X)

⌋
, with N the number of mutations per chain and ed the

energy quantum. In order to generate chain batches of 32 chains each, while remaining
unbiased, we use numChainBatches =

⌊
U(0,1)+ 1

32×N×ed

f (X)
p(X)

⌋
.

The mutation chains in a batch are generated in parallel. A complete mutation chain is
generated by repeatedly extending the chain by one mutation, until the chain consists of N
mutations. The sampler generates all mutation chains in parallel, so it repeatedly generates
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Figure 9.6: ERPT sampler flowchart. Extension of the PT sampler. Each time a light
transport path may be created, the mutate sub-flowchart is executed. No distinction is
made between phases, any transitions requiring ray tracing are indicated by a double bar
through the transition arrow.

mutation batches of 32 mutations in parallel, one mutation for each chain in the chain batch.
Repeating this N times gives 32 mutation chains of N mutations each. Algorithm 4 presents
an overview of the mutate routine; it closely resembles the original ERPT method (see al-
gorithm 2) except now, batches of 32 mutation chains are generated in parallel. Note that all
chains in a batch start with the same light transport path. This introduces some correlation
between mutation chains, especially between the first few mutations in the chains. This
problem is mitigated by discarding the first M mutations of each mutation chain. We found
that discarding the first 2 or 3 mutations is usually enough, unless the average acceptance
probability is very low for mutations around the initial path. However, in such cases the mu-
tation chains will have problems exploring the mutation feature anyway, causing speckles
in the image. Using a despeckle filter solves this problem.

Another consequence of generating mutation chains in large batches from a single ini-
tial sample is that all mutation chains will explore the same mutation feature, resulting in
32N mutations per batch exploring a single feature. As explained in section 9.2.3, using
our improved mutation strategy significantly increases feature sizes and reduces noticeable
artifacts due to long mutation chains. This reduction applies equally well to the case of
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multiple mutation chains exploring the same feature because chains tent to spread out rather
fast. Using our improved mutation strategy therefore significantly reduces artifacts caused
by generating mutation chains in batches.

Algorithm 4 : Mutate(X,N,ed)

numChainBatches←×
⌊
U(0,1)+ 1

32×N×ed

f (X)
p(X)

⌋
for i = 1 to numChainBatches do

for j = 1 to 32 in parallel do
Y j← X

end for
for j = 1 to N + M do

for k = 1 to 32 in parallel do
Zk←mutate(Yk)
a← a(Yk→ Zk)
if j > M then

deposit aed energy at Zk
deposit (1−a)ed energy at Yk

end if
if a≥U(0,1) then

Yk← Zk
end if

end for
end for

end for

Now look back at the mutate routine in the flowchart in figure 9.6. The steps responsible
for generating mutation batches are green and the steps for generating chain batches are
purple. After a chain batch is initialized, the sampler starts the first mutation batch.

During mutation initialization, either a light or lens mutation is selected. The number
of vertices to mutate is determined through Russian roulette. These choices are shared by
all mutations in the mutation batch. To see why this sharing is possible, note that all muta-
tion chains in a batch start with the same path. Also note that our mutation strategy neither
mutates the path length, nor its signature (specularity of a vertex is preserved under muta-
tion). Hence, all mutations in the batch have the same path signature. Because the choices
of mutation type and number of vertices to mutate only depend on the path signature, it is
possible to share the same choice between all mutations in the batch.

After initialization, the mutations are repeatedly extended by one extra vertex until the
selected number of vertices is mutated. Note that for most mutation batches, an explicit
connection is required to complete the mutations. When the mutation batch is complete,
acceptance probabilities are computed, energy is deposited to the image and each mutation
is either accepted or rejected. This process is repeated until N such mutation batches are
generated after which the chain batch is complete. If there are unprocessed mutation chain
batches left, the sampler starts the next chain batch. If not, the mutation routine finishes and
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path tracing is resumed.

9.3.3 Implementation details

In this section, we describe the implementation details of our GPU implementation. We
start by giving a general idea of our implementation before going into further details.

First off, in contrast to the previous tracers, the ERPT implementation restricts the max-
imum path length, introducing some bias into the image. This is necessary because the
complete light transport path is needed during energy redistribution.

From chapter 3 we know that for high GPU performance, we require both parallelism in
the form of SIMT efficiency and coalesced memory access. To allow high SIMT efficiency,
all threads in a GPU warp should follow the same code path where possible. In our imple-
mentation, all threads in a warp execute the same step from the ERPT sampler flowchart
(figure 9.6) in parallel. To realize this, samplers are grouped in groups of 32 samplers. The
flow of control for samplers is generally handled per group instead of per sampler, so all
samplers in a group follow the same steps in the flowchart. In practice, each sampler group
maps to a single GPU warp. The first thread in a warp dictates the general control flow; all
other threads follow. Whenever a step is not applicable to one of the samplers in the group,
the corresponding thread remains idle until the warp finished this step. All memory access
is coalesced because the sampler data in stored as a structure of arrays in memory, similar
to the PT and SBDPT implementations.

The ERPT sampler is no longer divided in separate phases. Therefore, besides the
general ray tracing kernel, the implementation consists of a single sampler kernel. Each
iteration, the sampler kernel is executed for all sampler groups, generating a (possibly com-
pacted) stream of output rays. Then, these rays are traced. The ray tracing results are used
in the next iteration. As already mentioned, all samplers in a group share their flow of con-
trol. Different groups may however follow different code paths. For example, during an
iteration, some groups may perform path tracing while others are distributing energy. Dur-
ing each iteration, each warp advances its corresponding sampler group until at least one of
the samplers in the group requires ray tracing. The rays are output to the output stream and
the warp execution is suspended. Looking at the flowchart, all transitions where ray output
may occur are indicated by double bars (figure 9.6).

In the PT and SBDPT implementations, each sampler matches a single GPU thread, so
threads in a warp did not explicitly work together. All parallelism was implicitly realized
by the hardware. For the ERPT implementation, this is no longer true. Now, each sampler
group maps to a single warp. During path tracing each sampler in a group still maps to
a single thread in the corresponding warp, similar to the other GPU tracers. However,
during energy redistribution all threads in the warp work on a single sampler, chosen from
the sampler group. All other samplers in the group are temporarily suspended until energy
redistribution for the selected sampler is complete. During energy redistribution, the threads
in a warp work closely together to maintain parallelism.

In the next sections, we will give further details on the implementation of path tracing
and energy redistribution.
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Path Tracing

The path tracing part of the ERPT implementation accomplishes its GPU efficiency in ex-
actly the same way the TPPT implementation does: the algorithmic steps are executed in
a fixed order (top-down in the flowchart). If a step is not applicable to some threads, they
remain idle until the other threads in the warp finish this step. At first sight, it may seem
that the removal of shortcuts in the sampler flowchart significantly changes the execution
flow, but this is not true. To see this, remember that on the GPU, threads in a warp always
follow the same code path anyway, although some threads may be temporarily disabled.
Therefore, when some threads take a shortcut, they still have to remain idle until all other
threads not taking the shortcut have finished the remaining steps. Hence, the shortcuts are
implicitly removed by the GPU hardware.
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Figure 9.7: Path vertex access. Thread 1 has regenerated its sampler after the first two
iterations, resulting in a) Non-coalesced access in the vertex buffers b) Coalesced access in
the cyclic vertex buffers. In a cyclic vertex buffer, the path does not need to start at the be-
ginning of the buffer. By moving to the next vertex in the buffer after each Extend/Generate
step, whether the path was regenerated or not, memory access remains coalesced after path
regeneration.

Coalesced path vertex storage requires some extra work compared to TPPT. The reason
for this is that during energy redistribution, the complete light transport path is mutated.
Therefore, it is no longer possible to only store the last path vertex, as done in TPPT; All
path vertices must be stored during path tracing. Because dynamic memory allocation per
sampler does not seem like a feasible solution, we impose a maximum path length on the
sampler, introducing some bias. Remember that during path tracing, each sampler maps
to a single GPU thread. Instead of having enough memory to store a single vertex per
thread, each thread now has a local vertex buffer to store all path vertices. The buffers for
threads in a warp are stored as a structure of arrays so that when all threads in a warp access
local vertices with the same index in their local vertex buffers, this results in one coalesced
memory transaction serving all threads at once. Note that when the threads access different
vertices at the same time, one coalesced memory transfer is required for each unique index
used, resulting in reduced effective memory bandwidth.

Because Russian roulette is performed independently by all samplers, some samplers
will be terminated and regenerated earlier than others. Therefore, during some iteration,
threads in a warp may be working on paths of different lengths. As shown in figure 9.7a,
this results in threads accessing different vertices, breaking coalesced memory access. Note
however, that there is no need to store the first path vertex at the beginning of the vertex
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device int select sampler ( bool redistribute energy )
{

shared volatile int index;

index = −1;

if ( redistribute energy )
index = threadIdx .x;

return index;
}

Listing 9.1: Code snippit for selecting a sampler from a group for energy redistribution

buffer. After each Extend/Generate step, a new path vertex is generated, whether the path
was regenerated or not. By treating the vertex buffer as a cyclic buffer and storing the
next vertex at the next spot in memory, even after regeneration, memory access remains
coalesced (see figure 9.7b).

Energy Redistribution

During path tracing, each sampler requires only a single thread. However, during energy
redistribution, each sampler requires 32 threads to process all mutation chains in a batch in
parallel. Therefore, during energy redistribution, only a single sampler in the group is active.
All 32 threads in the corresponding warp work together on this single sampler, allowing for
parallelism during mutation chain batch generation. During the Init chain batch step, the
warp checks if some samplers in the group require energy redistribution. If so, the threads
collectively select one of the samplers to work on. Listing 9.1 shows a small CUDA code
snippet for selecting a sampler for energy redistribution.

In this code, we make use of CUDA’s write semantics for shared memory. Remember
from section 3.4 that when multiple threads in a warp simultaneously write to the same
shared memory, one of the writes is guaranteed to succeed. All samplers requiring energy
redistribution write their index into the same shared variable. Afterwards, the variable will
contain the index of one of these samplers. This sampler is selected for energy redistri-
bution. After energy redistribution is complete, the selection procedure is repeated until no
more samplers in the group require energy redistribution. Only then is path tracing resumed.

When a sampler is selected for energy redistribution, each thread in the warp starts pro-
cessing one mutation chain. This takes multiple iterations to complete. All mutation chains
start with the same path: the light transport path found by the selected sampler. During
chain initialization, this path is distributed to all threads in the warp. After the mutation
chains are initialized, all threads start generating mutations. During mutation initialization,
the first thread in the warp determines the mutation type and number of vertices to mutate.
These choices are communicated to the other threads through shared memory. Then, all
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threads generate their next mutation in parallel. Although the mutation chains start with the
same path, the chains will diverge due to randomization.

As explained in section 9.3.3, all threads in a warp follow the same code path because
mutation choices are shared between mutations in a batch. This results in high GPU effi-
ciency. Furthermore, because all threads will access the same path vertices during mutation,
memory access is coalesced, allowing for high effective memory bandwidth. Note that ef-
ficiency is reduced when mutations fail early in their construction. When a mutation fails
during construction, there is no reason to finish the mutation. Hence, the corresponding
threads will remain idle until all other mutations in the batch are complete.

After a mutation batch is complete, energy is deposited on the image plane and each
mutation is either rejected or accepted. Energy contributions to the image plane require
scattered atomic writes to global memory, similar to the SBDPT implementation. Remem-
ber that scattered writes are relatively expensive compared to coalesced memory access.
We can half the number of scattered writes by locally accumulating energy for the accepted
mutation and only depositing accumulated energy for rejected mutations. In algorithms 2
and 4, two deposits are made after each mutation. However, one of the corresponding paths
is used during the next mutation. By postponing the deposit for this path until later and
accumulating the energy locally, only a single deposit is required per mutation, cutting the
number of scattered writes in half.

Memory allocation

As explained earlier, because the whole path is required during energy distribution, each
sampler requires enough memory to hold a path of maximum length. This memory is stat-
ically allocated beforehand for all samplers. However, this is not the only required vertex
storage. During energy redistribution, a new mutation is constructed before it is either ac-
cepted or rejected. Hence, enough memory is needed to store both the old and new mutation
per mutation chain. Statically allocating enough memory per sampler group for energy re-
distribution would increase the total memory footprint by almost 200%. Luckily, we can
dynamically allocate memory storage for energy redistribution. Dynamic memory alloca-
tion during path tracing was prohibitively expensive because paths in a sampler group may
have different lengths and are regenerated at a high frequency. However, this is not true for
energy redistribution. During energy redistribution, all mutations in a batch have the same
length. Furthermore, energy redistribution spans many iterations, as each mutation chain
consists of many mutations and each mutation requires multiple iterations. Hence, dynamic
memory allocation for energy redistribution will occur much less frequently, making it a
practical solution.

Vertices are allocated in blocks of 64 vertices; two for each mutation chain in the batch,
stored as a structure of arrays. During mutation chain initializations, the sampler allocates
as many blocks as there are vertices on the mutation path. Dynamic allocation is performed
using atomic instructions. A large pool of vertex blocks is statically allocated. Pointers to
all vertex blocks are stored on a FIFO list. Then, vertex blocks are allocated by removing
pointers from the head of the list and blocks are released by adding their pointers back at
the tail of the list. We found that for most scenes, the total required memory for energy
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redistribution is reduced by about 60% compared to static allocation. Due to its infrequent
occurrence, dynamic memory allocation did not measurably influence the overall perfor-
mance.

Specular prefix path

Having a maximum path length introduces bias into the result. Usually, this bias is hardly
visible. However, one noticeable exception concerns paths starting with many specular
vertices. For example, when looking directly at a complex reflective object, some paths
require many reflections before reaching a diffuse surface. Restricting the path length may
remove such paths, leaving parts of the scene completely black. Luckily, we can make
an exception for this kind of paths. First of all, note that paths starting with a specular
vertex only allow lens mutations. Furthermore, note that these specular vertices are not
used during mutation. The only information required is the number of specular vertices at
the beginning of a path. We call the sequence of specular vertices at the beginning of a
path its specular prefix path. During path tracing, we do not store the specular prefix path,
but only record the length of the specular prefix path. During energy redistribution, each
mutation is expected to start with equally many specular vertices. This way, the number
of specular vertices at the beginning of a light transport path is unbounded. Similar tricks
could be used to allow any number of specular vertices on the whole path, only restricting
the number of diffuse vertices, but at the cost of breaking coalesced memory access. We
therefore only implemented specular prefix paths.

Progressive result

The ERPT sampler uses sample regeneration to fully utilize the GPU. As explained in sec-
tion 6.2.4, a cool down period is required to obtain an unbiased result. The length of the
cool down period depends on the number of iterations required to finish one sample. Com-
pared to one PT sample, it may take a sampler many more iterations to complete one ERPT
sample. Each mutation chain batch found by the sampler takes many iterations to complete.
Also, whenever any of the other samplers in the corresponding sampler group finds a mu-
tation chain batch, the sampler is suspended many iterations until this mutation chain batch
is complete. Hence, the number of iterations to finish an ERPT sample may be large and
varies significantly. This usually results in a long cool down period in order to obtain an
unbiased result3.

For an interactive tracer, it is important to visualize the progressive results every few
iterations. However, the varying number of iterations to complete an ERPT sample poses
a serious problem for estimating the progress. In order to display progressive results, an
estimate of the total number of samples is required. A naı̈ve estimate would simply count
either the number of regenerated or terminated samples. Because samples may take many
iterations to finish, these estimates will be very bad during the first few tens of iterations.
The problem is that most samples will be somewhere halfway under construction. However,
samples already contribute energy to the image plane during their construction. When only

3Disregarding the fact that the result will never be fully unbiased due to the restricted path length.
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counting at termination, the sample progress is underestimated and the progressive result
will be too bright. When counting at regeneration, the reverse is true and the progressive
results will be too dark. This problem can be alleviated by roughly estimating the progress
of samples. We count the total number of found mutation chains Cchains, including mutation
chains that are not yet completed. Furthermore, we count the total number of completed
mutations Cmutations. We already know how many mutations are generated per mutation
chain, namely 32N, so we can now estimate the progress of all found mutation chains as
Cmutations

32NCchains
. We initially estimate the average number of samples by counting the number

of regenerated samples, then we correct this estimate using the estimated mutation chain
progress. The final estimate is still very rough, because there is no way of estimating the
number of mutation chains that are still to be found for an unfinished sample. Although
being a very rough estimation, we found it to be a much better estimation for progress.
In practice, the remaining error in the estimation is much less visible, removing the heavy
under-/overestimation of early progressive results. See figure 9.8 for a comparison.

(a) (b) (c)

Figure 9.8: ERPT progress estimation after a few iterations (a) without mutation chain
progress correction (b) with mutation chain progress correction. (c) Reference image.

9.3.4 Results

In this section we present the results of our ERPT implementation. We start by comparing
the original and improved mutation strategy. Then, we assess the SIMT efficiency of our im-
plementations, followed by some performance results and a discussion on the convergence
characteristics of the implementation.

9.3.5 Improved mutation

We start by comparing the original mutation strategy, which we will now call the short
mutation strategy, and the improved mutation strategy, or Russian roulette mutation strategy.
First, we compare the average number of traversed rays required per mutation. Table 9.1
shows the results. As expected in section 9.2.3, on average the mutations require no more
than one extra ray traversal per mutation. For most scenes, the average number of rays
only increases marginally. The average number of rays increases most for the INVISIBLE
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DATE scene. This is because the scene is mostly lit by very long paths, so consequently the
corresponding mutations also mutate more path vertices on average.

Average rays per mutation
Short Russian roulette

SPONZA 2.00 2.18
SIBENIK 2.00 2.16

STANFORD 3.12 3.25
FAIRY FOREST 2.00 2.03

GLASS EGG 2.01 2.30
INVISIBLE DATE 2.00 2.77

CONFERENCE 2.00 2.06

Table 9.1: Average number of traversed rays per mutation for short mutations and Russian
roulette mutations.

Table 9.2 shows the average acceptance probability of the short and Russian roulette
mutation strategy. It is interesting to see that the average acceptance probability is decreased
for the Russian roulette mutation. An important reason for this decrease is probably because
mutating multiple vertices causes larger changes in the overall path, reducing the probability
of generating a valid mutation candidate. For example, in the INVISIBLE DATE scene, large
changes to multiple path vertices can easily cause the mutation to hit the door instead of the
crack in the door. This affectively reduces the acceptance probability.

Even though the acceptance probability is reduced, section 9.2.3 showed a significant
reduction in objectional noise in the end result. This shows that a high average acceptance
probability does not guarantee an effective mutation strategy for ERPT. Especially when
long mutation chains are used, having large mutation features is at least as important for an
effective mutation strategy as the average acceptance probability.

Average mutation acceptance
Short Russian roulette

SPONZA 0.83 0.69
SIBENIK 0.80 0.64

STANFORD 0.58 0.44
FAIRY FOREST 0.84 0.60

GLASS EGG 0.83 0.70
INVISIBLE DATE 0.83 0.51

CONFERENCE 0.84 0.73

Table 9.2: Average mutation acceptance for short mutations and Russian roulette mutations.
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9.3.6 Efficiency

Tables 9.3 and 9.4 show the efficiency and occurrence of the ERPT sampler steps. The
sampler steps are separated in path tracing steps (table 9.3), used to generate initial samples
for energy redistribution, and energy redistribution steps (table 9.4), generating the actual
mutation chains. Because most time is spent in energy redistribution, the occurrence of path
tracing steps is very low. However, because all threads in a warp are either redistributing
energy or tracing paths, this does not reduce the average efficiency of path tracing steps,
which is roughly comparable to the TPPT efficiency from chapter 7. Note that the Implicit
step is removed and incorporated in the Intersect step.

Results
Regenerate Extend Intersect Explicit Connect
Ef Oc Ef Oc Ef Oc Ef Oc Ef Oc

SPONZA 52 0 96 0 100 0 78 0 96 0
SIBENIK 50 3 99 3 100 3 72 3 99 3

STANFORD 33 2 98 2 100 2 47 2 99 2
FAIRY FOREST 58 0 82 0 100 0 77 0 81 0

GLASS EGG 51 0 96 0 100 0 33 0 97 0
INVISIBLE DATE 50 0 99 0 100 0 60 0 100 0

CONFERENCE 51 0 98 0 100 0 68 0 99 0

Table 9.3: SIMT efficiency and occurrence of path tracing steps in an average ERPT itera-
tion.

As shown in table 9.4, the energy redistribution steps all have very high efficiency.
Again, occurrence is not very high, but this does not reduce efficiency because all threads
in a warp follow the same code path. Note that because PT steps have relatively low oc-
currence compared to energy redistribution steps, the overall ERPT performance is mostly
determined by the energy redistribution steps. As these steps show very high efficiency, the
ERPT implementation achieves high SIMT efficiency.

Results
Bounce Connect Init Mutation Init ER Contribute Init Chain
Ef Oc Ef Oc Ef Oc Ef Oc Ef Oc Ef Oc

SPONZA 96 55 89 31 100 40 100 0 100 40 100 1
SIBENIK 96 49 89 27 100 35 100 3 100 35 100 3

STANFORD 86 64 81 15 100 23 100 2 100 23 100 2
FAIRY FOREST 98 55 89 33 100 43 100 0 100 43 100 0

GLASS EGG 96 58 95 32 100 39 100 0 100 39 100 0
INVISIBLE DATE 95 62 86 32 100 35 100 0 100 35 100 0

CONFERENCE 97 55 93 33 100 43 100 0 100 43 100 0

Table 9.4: SIMT efficiency and occurrence of mutation steps in an average ERPT iteration.
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9.3.7 Performance

The high SIMT efficiency of the ERPT sampler translates in a high performance GPU im-
plementation. Figure 9.9 shows the ERPT sampler performance in rays and mutations per
second. It shows that the ERPT sampler achieves a relatively high performance, compared
to the SBDPT from last chapter. The reason is mostly determined by the high SIMT ef-
ficiency of the ERPT sampler. Besides the high efficiency due to all threads in a warp
following the same algorithmic steps, the SIMT efficiency within steps is also relatively
high because all threads in a warp work on mutations of the same signature. Therefore, at
each bounce they expect the same material type, further increasing SIMT efficiency. Fi-
nally, because all threads in a warp start their mutation chain with the same initial sample,
rays generated by a warp often show a reasonable amount of coherence, increasing the ray
traversal performance.
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Figure 9.9: General ERPT performance in rays and mutations per second.

Figure 9.10 shows a time partition of an average ERPT iteration in phases. The per-
centage of time spent on sampler advancing is similar to the SBDPT from last chapter.
Still, the overall performance is higher. This further indicates the increase in ray traversal
performance due to increased ray coherence.

Finally, table 9.5 shows the memory footprint of the ERPT sampler. Because all path
vertices must be stored for energy redistribution, the memory footprint depends on the max-
imum allowed path length. The table shows the default memory footprint and the extra
memory required per allowed path vertex. When using dynamic mutation vertex allocation,
less mutation vertices are required. Therefore, the memory footprint for path vertices and
dynamic mutation vertices are also shown separately. The ERPT method has a relatively
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Figure 9.10: ERPT procentual time partition of an iteration.

large memory footprint. For the method to achieve high performance, a significant sam-
pler stream is required. Therefore, this method requires a modern GPU with a significant
amount of device memory.

Default memory usage per 256 warps 2752 Kb
Extra memory usage per static vertex 1824 Kb

Extra memory usage per static path vertex 608 Kb
Extra memory usage per dynamic mutation vertex 1217 Kb

Table 9.5: ERPT Memory usage for sampler and ray storage per 256 warps.

9.3.8 Convergence

ERPT renders some light effects much faster than PT or SBDPT. Figure 9.11 shows the
caustic from the glass egg in the GLASS EGG scene. On the left, the caustic is rendered
with SBDPT, while on the right, it is rendered with ERPT. Both renderings took equally
long to render. The ERPT rendering is much smoother, having virtually no high frequency
noise. The caustic however, is slightly darker because the progressive rendering result was
cut off, skipping the cool down period required to remove all bias.

Figure 9.12 shows a comparison of ERPT with regular PT on the SPONZA scene. This
image clearly shows that the ERPT and PT samplers both converge to the same image.
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(a) (b)

Figure 9.11: Complex caustic rendered with SBDPT (a) and ERPT (b). Computation time
was similar for both images. The ERPT image is darker because progressive render was cut
off, skipping the cool down period to remove all bias.

While the PT rendering still contains a significant amount of high frequency noise, the
ERPT rendering however does not show noticeable noise.

The merits of ERPT are even more pronounced when applied to the INVISIBLE DATE

scene. Figure 9.13 shows the INVISIBLE DATE scene rendered with SSPT, SBDPT and
ERPT. All renderings took equally long to render. These images show that ERPT is much
better at capturing light traveling through small cracks in the scene. For this scene, SBDPT
is hardly any better than PT: finding paths through the crack in the door is still very unlikely.
ERPT uses energy redistribution to exploit any found light paths, effectively exploring the
scene illumination.

Although the ERPT method produces images with little high frequency noise, this does
not mean the estimate has a smaller error. Figure 9.14 shows the STANFORD scene, rendered
with SBDPT and ERPT. The SBDPT sampler still contains a lot of high frequency noise.
On the other hand, many features are still completely missing from the ERPT rendering.
This is an inherent property of exploring features through energy redistribution. Note that
all missing features correspond to relatively long paths. This is a consequence of how the
sampler is implemented on the GPU. During path tracing, short paths are encountered first.
Therefore, at the start of the algorithm, mutation chains mostly handle short paths. Only
after the energy of these short paths is distributed, is path tracing continued and can longer
paths be found. Therefore, the initial progressive results usually lack light contributions
from long paths.

Furthermore, when the scene contains very difficult and small features, such as the
features corresponding to several reflections and refractions in the Stanford dragon, ERPT
has a hard time distributing the energy, resulting in a few high energy speckles. These
speckles are easily removed using a despeckle filter, but this means that the contribution of
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Figure 9.12: Sponza scene progressive rendering. The left half of the image is rendered
with SSPT, the right half is rendered with ERPT. Rendering took 20 seconds.

the corresponding features lack from the final rendering.
In this section, we showed that the ERPT implementation achieves high performance.

Furthermore, we showed that the ERPT has a relatively high convergence speed compared
to PT and SBDPT when it comes to scenes with certain complex illumination effects, espe-
cially due to light traveling through small cracks in the scene. Finally, we showed that the
lack of high frequency noise in ERPT renderings can sometimes be deceiving, because the
image may still lack significant illumination effects.
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(a) (b)

(c)

Figure 9.13: Invisible date scene rendered with SSPT (a), SBDPT (b) and ERPT (c). Com-
putation time was similar for all images. SBDPT is only slightly better than SSPT. ERPT
quality is much higher at the cost of a little bias due to maximum path length.
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(a)

(b)

Figure 9.14: Stanford scene rendered with (a) BDPT and (b) ERPT. The BDPT rendering
suffers from much more high frequency noise, but in the ERPT rendering, many features
are still completely absent. Scenes with many small and complex features converge slowly
with ERPT.
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Chapter 10

Comparison

In this section we compare the performance of the three GPU-only tracers: SSPT, SBDPT
and ERPT. We do not consider TPPT here because it implements the same sampler as SSPT
but performs consistently worse.

10.1 Performance

We will first compare the performance of the GPU implementations in executed samplers
and traversed rays per second. We compare the ray traversal and sampler iteration perfor-
mance independently. Figure 10.1 shows the performance in the number of iterations per
second, excluding ray traversal times. This figure thus shows the performance of advancing
samplers and generating output rays.

Note that the SSPT and SBDPT samplers execute different phases during each iteration
and may therefore generate one extension ray and one connection ray during each iteration,
while the ERPT sampler only executes a single phase per iteration and generates either
one extension or one connection ray. For a fair performance comparison we count both
the Extend and Regenerate/Connect phases as separate iterations in our measurements,
effectively doubling the number of iterations per second for SSPT and SBDPT.

Figure 10.1 shows that SSPT performs considerably better than SBDPT and ERPT for
all scenes. ERPT performs relatively worse and SBDPT ends last. The high performance
of SSPT was to be expected. SSPT requires much less complicated computations (no MIS
or mutation probability). Furthermore, the increased primary ray coherence in SSPT results
in more coherent shading and thus GPU efficiency, increasing the sampler performance
further. The same goes for the ERPT algorithm; because all mutations in a warp have the
same length and path signature, ERPT samplers achieve high GPU efficiency, increasing the
sampler performance. SBDPT on the other hand requires relatively high memory bandwidth
due to coalesced memory access because both the eye and light path vertices are read during
each iteration, even though only one of these is actually needed during extension (see section
8.4.2). Furthermore, SBDPT requires more computations in order to construct MIS weights.
Hence, the reduced performance of the SBDPT sampler was to be expected.
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10.1 Performance Comparison

Because SBDPT does not benefit from any kind of sampler coherence, the performance
is very stable and scene-independent. The only exception is the INVISIBLE DATE scene
where SBDPT reaches significantly higher performance because the scene’s triangle data
completely fits into the GPU’s L2 cache and most connection rays fail.
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Figure 10.1: Iteration performance comparison in iterations per second. Ray traversal times
are not included in these figures.

Even though there are significant differences in sampler performance between the three
GPU tracers, the maximum difference is no more than 150% and on average about 70%.
Furthermore, for reasonably sized scenes, the performance hardly depends on scene size.
Hence, the differences in sampler performance are not that large (significantly less than one
order of magnitude) so the overall performance and scalability of these algorithms will be
largely determined by their ray traversal performance.

Figure 10.2 shows the ray traversal performance in rays per second, excluding sampler
iteration times. We used the same ray traversal kernel in all tracers [1]. Using a different
traversal algorithm, for example one using a kd-tree as its spatial structure, would obviously
give significantly different results. We believe however that many of the observations drawn
from these results will be similar for most traversal algorithms because traversal algorithms
usually benefit from ray coherence.

Although the same ray traversal kernel is used, the traversal performance for the differ-
ent tracers differs by up to 70%. The SSPT and ERPT algorithms achieve roughly the same
ray traversal performance, somewhat dependent on the particular scene. Again, the SBDPT
algorithm performs worst on all scenes. The reasons for this difference in ray traversal per-
formance are similar to those causing the difference in sampler iteration performance. The
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Figure 10.2: Ray traversal performance comparison in rays per second. Sampler iteration
times are not included in these figures.

SSPT algorithm benefits heavily from primary ray coherence, achieving high traversal per-
formance. Similar, the ERPT algorithm achieves some ray coherence because all mutation
chains in a warp start with the same initial mutation. Therefore mutations in a warp will
often contain a reasonable amount of coherence, resulting in high traversal performance.
SBDPT does not benefit from such coherence. Furthermore, while explicit connection rays
in path tracing all end in the same light sources, causing significant ray coherence, connec-
tion rays in BDPT connect eye and light vertices from all over the scene. Therefore, the
average ray traversal performance for bidirectional connection rays is lower than for ordi-
nary connection rays in path tracing. This further reduces the ray traversal performance of
SBDPT.

Although ray traversal performance differs significantly from one tracer to another, the
differences remain limited. Figure 10.2 shows that ray traversal performance decreases
somewhat for larger scenes, but although CONFERENCE is several orders of magnitude
larger than INVISIBLE DATE, the ray traversal speed decreases by less than a factor of 3.
As sampler performance barely depends on scene size, this indicates that our GPU tracers
scale very well with scene size.

Lastly, a word on memory consumption. SSPT has the smallest memory footprint, re-
quiring storage for only a single path vertex per sampler. SBDPT also has a relatively small
memory footprint of two path vertices per sampler, independent of path length. ERPT on
the other hand requires storage for all path vertices, making its memory footprint dependent
on the maximum path length. This restricts the scalability of our ERPT implementation.
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Therefore, while SSPT and SBDPT are suitable for older graphics devices with signifi-
cantly less device memory, an efficient ERPT implementation requires a modern GPU with
at least 1G of device memory.

10.2 Convergence

Although the performance measures from last section give some insight into the scalability
of the implementations, they are not a very good measure for comparing the implementa-
tions. The goal of these algorithms is to compute a converged image. Therefore, to evaluate
the implementations, we should compare the convergence speed of the GPU tracers. When
it comes to convergence, there are considerable differences between these algorithms. Each
algorithm has its strengths and weaknesses and its performance heavily depends on the par-
ticular scene. While some light effects are best captured with one algorithm, other effects
are better sampled by another. To emphasize the strengths and weaknesses of the three
implementations, we compared them using three scenes: SPONZA, GLASS EGG and IN-
VISIBLE DATE. The progressive results for the three scenes are shown in figures 10.3, 10.4
and 10.5.

(a) (b) (c)

Figure 10.3: Sponza scene rendered with SSPT (a), SBDPT (b) and ERPT (c). Computation
time was similar for all images (10 seconds).

For the SPONZA scene in figure 10.3, there is only little difference in quality between the
three tracers. All three tracers have roughly the same noise levels. The SSPT has the highest
noise level, showing significant high frequency noise over the image. The SBDPT and
ERPT images have similar noise levels and it depends on personal taste which is preferable.
The reason all methods perform equally well on SPONZA is because the scene does not
contain any significantly complex illumination effects. The scene has a large accessible
light source that is easily sampled backwards from the eye. Furthermore, the scene contains
no complex materials, so complex light effects such as caustics are absent in the scene.
As sampling light paths is relatively easy in this scene, advanced sampling methods such
as BDPT and ERPT do not significantly improve over ordinary PT, resulting in similar
convergence speed.
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(a) (b) (c)

Figure 10.4: Glass Egg scene rendered with SSPT (a), SBDPT (b) and ERPT (c). Compu-
tation time was similar for all images (10 seconds).

On the other hand, the GLASS EGG scene in figure 10.4 shows a much more significant
difference between the three tracers, caused by the small and inaccessible light sources and
many complex materials in the scene. Both light sources contain small glass lenses, so the
entire scene is lit by two large caustics. Hence, all explicit connections to the light source
in the SSPT algorithm fail because of these lenses and all light must be sampled through
implicit paths. For this reason, SSPT performs exceptionally bad on this scene. ERPT
already performs much better than PT, but after only 10 seconds, the result is still noisy
and splotchy due to many small features. For this scene, SBDPT performs best, effectively
sampling the indirect light by sampling forward from the light sources. Note however that
SBDPT still has a problem with rendering caustics seen through the glass egg. As explained
in section 8.3.2, this is as expected. SBDPT does not contain any sampling strategy which
samples these paths with relative ease; reflected caustics are only sampled through implicit
eye paths. Hence, the SBDPT does not perform any better on these effects than the SSPT
algorithm. ERPT does not suffer from this problem, sampling a reflected caustic is not
more difficult than sampling any other caustic and as soon as an initial path for the reflected
caustic is found, energy redistribution is used to explore similar paths in the same mutation
feature.

Finally, the INVISIBLE DATE scene in figure 10.5 shows an exceptionally difficult scene.
Although the scene only contains simple materials and has relatively low geometric com-
plexity, it is considered very difficult because the entire scene is lit by indirect light passing
through a relatively small crack in the scene geometry. Finding light transport paths through
this crack is very unlikely, no matter which bidirectional sampling strategy is used. This
causes, even after 30 seconds of render time, both SSPT and SBDPT to still produce very
noisy images. SBDPT performs slightly better than SSPT, but the difference is not very
significant. On the other hand, ERPT performs exceptionally good on this scene compared
with the other two tracers. Whenever ERPT finds an initial light transport path through
the crack in the scene, small mutations are used to easily produce many mutations passing
through the crack, effectively exploring the illumination in the scene.

In general, SSPT performs well on scenes where the light source is easily reachable
through backwards sampling from the eye. This includes most scenes with little indirect
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(a) (b) (c)

Figure 10.5: Invisible Date scene rendered with SSPT (a), SBDPT (b) and ERPT (c). Com-
putation time was similar for all images (30 seconds).

light and no caustics. SBDPT performs much better for scenes with lots of indirect light and
complex materials, as long as there is at least one bidirectional sampling strategy capable
of sampling each illumination effect with relative ease. This includes scenes lit by indirect
light from light sources in confined spaces and scenes containing complex caustics. Finally,
ERPT performs outstandingly for scenes with very inaccessible light sources due to small
cracks in the geometry. ERPT performs reasonably well on complex materials, caustics and
reflected caustics, but often suffers from small mutation features.

Our findings agree with reported results on CPU implementations of PT, BDPT and
ERPT [50, 4]. Hence, the convergence characteristics of these algorithms are preserved in
our GPU implementations.
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Chapter 11

Conclusions and Future Work

In this thesis we sought to find efficient GPU implementations for unbiased physically based
rendering methods. We started by investigating a hybrid architecture, having the sampler
implemented on the CPU while using the GPU for ray traversal only. By implementing
the sampler within a generic sampler framework, this hybrid architecture can easily be
combined with any type of sampler. We showed that although very flexible, the hybrid
architecture does not scale well, and advancing large streams of samplers on the CPU is
easily limited by the memory bandwidth of the system’s main memory.

Therefore, we presented streaming GPU implementations for three well known render-
ing methods: PT, BDPT and ERPT. Having both sampling and ray traversal implemented
on the GPU, these implementations run entirely on the GPU and do not suffer from limited
system memory bandwidth. We showed how we achieved high parallelism, SIMT effi-
ciency and coalesced memory access in our implementations, required for an efficient GPU
implementation.

We showed that by immediately packing output rays in a compact continuous stream
of output rays, GPU ray traversal performance is increased. Furthermore, we showed that
immediate sampler stream packing can be used to speed up the GPU PT implementation
and increase ray traversal performance further by exploiting primary ray coherence.

The streaming implementation of BDPT (SBDPT) was obtained by using a recursive
reformulation of the Multiple Importance Sampling weight computations. Using this for-
mulation, SBDPT requires only storage for a single light and eye vertex in memory at any
time during sample evaluation, making the methods memory-footprint independent of the
path length and allowing for high SIMT efficiency.

In order to better understand the structural noise patterns produced by the ERPT algo-
rithm, we introduced the notion of mutation features. Using this analysis we presented an
improved mutation strategy, trading structural noise for more uniform noise. This allows for
longer mutation chains or more mutation chains starting at the same initial sample, with-
out introducing too much objectionable noise. This feature is used to achieve high GPU
efficiency in our GPU ERPT implementation. By generating similar mutation chains in
batches, all threads in a GPU warp are made to follow similar code paths, achieving high
SIMT efficiency and coalesced memory access.
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Finally, we showed that the convergence characteristics of the original samplers are pre-
served in our GPU implementations. Although the PT implementation achieves the highest
GPU performance, this does not compensate for the higher variance in its estimate. BDPT
often performs much better on scenes lit by indirect light and scenes containing many com-
plex materials. ERPT performs exceptionally good at sampling scenes lit by indirect light
passing through small cracks in the geometry and performs reasonably well on scenes with
complex materials, although it still suffers from small mutation features. The large differ-
ences in variance between these methods shows that high iteration and ray traversal per-
formance for GPU path tracers does not render more advanced sampling methods obsolete.
This is especially true for scenes containing complex illumination effects. Therefore, for
unbiased GPU rendering to be a valid alternative to CPU rendering, it is important to find
efficient GPU implementations for advanced rendering methods. Our work contributes to
this goal by presenting two such implementations for the BDPT and ERPT algorithms.

The GPU efficiency of our ERPT implementation is mainly based on the fact that all
mutations in a warp have the same path length. This leaves significant freedom in the choice
of mutation strategy. We believe that the mutation strategy could be further improved by
drawing ideas from Kelemen’s mutation strategy in pseudo-random number space [31]. By
making perturbation sizes proportional to the local BSDF, the average acceptance probabil-
ity of the mutation strategy could be further improved. Furthermore, by allowing the path
signature to change under mutation, the mutation feature size could be further increased, re-
ducing noise due to small mutation features. Also, similar to Kelemen, mutating complete
PT samples instead of one light transport path at a time could further increase the average
feature size, improving the mutation strategy [31]. Allowing path length to change under
mutation would significantly increase the feature size, but we expect it to be difficult to effi-
ciently implement such a mutation strategy on the GPU without sacrificing SIMT efficiency
and coalesced memory access. Improving the mutation strategy requires further research.

We wonder whether it is possible to use bidirectional sampling strategies to construct
light transport paths used for energy redistribution. Because bidirectional sampling strate-
gies are much better at sampling many difficult illumination effects, complex mutation fea-
tures will be more likely to be found. This might lead to a more even exploration of path
space over time, reducing the lack of important features in early progressive results.

Because our PT, BDPT and ERPT implementations require a limited number of BSDF
evaluations during each sampler phase, we except that these methods could be easily com-
bined with the work of Hoberock on efficient deferred shading in GPU ray tracers [26].
Hoberock reports a significant increase in shading performance when using complex pro-
cedural BSDFs. We are curious whether these results would also apply to our BDPT and
ERPT algorithms.

It is often beneficial to estimate the variance on the image plane and dedicate more
samples to these apparently difficult areas. Adding such methods to our algorithms could
further increase their performance [25, 42].

Finally, our implementations did not simulate advanced illumination effects such as
subsurface scattering [29], participating media [43, 34] or spectral rendering [49]. For com-
pleteness, a physically based renderer should also support these features. Extending our
implementation to support these features will require further research.

130



Bibliography

[1] Timo Aila and Samuli Laine. Understanding the efficiency of ray traversal on gpus. In
Proceedings of the Conference on High Performance Graphics 2009, HPG ’09, pages
145–149, New York, NY, USA, 2009. ACM.
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Appendix A

Glossary

In this appendix we give an overview of frequently used terms and abbreviations.

Balance heuristic: Combination strategy for MIS

BDPT: BiDirectional Path Tracing

BSDF: Bidirectional Scattering Distribution Function

ERPT: Energy Redistribution Path Tracing

GPGPU: General Purpose Graphics Processing Unit

IS: Importance Sampling

MIS: Multiple Importance Sampling

MLT: Metropolis Light Transport

Power heuristic: Generic form of the balance heuristic

PT: Path Tracing

SBDPT: Streaming BiDirectional Path Tracing

SIMT: Single Instruction Multiple Threads

SM: Streaming Multiprocessor on the GPU

SSPT: Streaming Sampler Path Tracing

TPPT: Two-Phase Path Tracing

Warp: Group of 32 threads, executed in SIMT on the GPU
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Appendix B

Sample probability

When applying the Monte Carlo method to the measurement equation, the probability of
sampling a path must be computed with respect to the area product measure on path space
(See section 2.3). Therefore, when sampling a light transport path, the probability of sam-
pling one or a sequence of path vertices with respect to one measure must often be converted
to the corresponding probability with respect to another measure in order to compute the
contribution or the importance weights of such a path (See sections 2.1 and 2.6). In prac-
tice, one often needs to convert between units solid angle, projected solid angle and surface
area. In this appendix, we derive some relations between probabilities with respect to these
measures and derived product measures, relevant to the PT, BDPT and ERPT algorithms.

The relation between the units solid angle dσ(~ω), projected solid angle dσ⊥ (~ω) and
surface area dA(x) is depicted in figure B.1 and is given by

Figure B.1: The geometric relation between the units projected solid angle, solid angle and
surface area.

dσ
⊥ (~ω) =

∣∣~ω ·~n′∣∣dσ(~ω) = G
(
x↔ x′

)
dA(x) (B.1)
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B.1 Vertex sampling Sample probability

In this relation, G(x↔ x′) is called the geometric factor and equals

G
(
x↔ x′

)
= V

(
x↔ x′

) |~ω ·~n| |~ω ·~n′|
|x− x′|2

(B.2)

where V (x↔ x′) is called the visibility factor, being 1 iff the two surface points x and x′ are
visible from one another and 0 otherwise.

B.1 Vertex sampling

Figure B.2 shows three common methods for sampling a path vertex xi, given the path ver-
tices xi−1 and xi+1. The first method simply samples xi directly on the surface geometry
according to some probability distribution PA (xi) with respect to surface area (upper right).
The second method samples xi forward from xi−1. It does this by sampling an outgoing
direction from xi−1 per unit projected solid angle and tracing a ray into the scene to find xi

(lower left). Similarly, the third method samples xi backwards from xi+1 (lower right). The

Figure B.2: Three methods for sampling path vertex xi: Per unit surface area (upper right),
through forward sampling from vertex xi−1 (bottom left) and through backward sampling
from vertex xi+1 (bottom right).

probability of sampling xi per projected solid angle through forward sampling is expressed
as P−→

σ ⊥ (xi−1→ xi). Similarly, the probability of sampling xi backward per projected solid
angle is expressed as P←−

σ ⊥ (xi← xi+1). In order to compute the probability PA (xi) of sam-
pling xi per unit surface area, these probabilities need to be converted from unit projected
solid angle to unit surface area. Using equation B.1, these probabilities relate according to

G(xi↔ xi−1)P−→
σ ⊥ (xi−1→ xi) = PA (xi) = G(xi↔ xi+1)P←−

σ ⊥ (xi← xi+1) (B.3)
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Sample probability B.2 Subpath sampling

See figure B.2 for a visual representation of the sampling probabilities per unit surface area
for forward and backward sampling.

B.2 Subpath sampling

A sequence of consecutive path vertices xs · · ·xt is often sampled using either forward or
backward sampling. Using the conversion factors from equation (B.3), the probability of
sampling such a sequence per unit area can be expressed in terms of the probabilities for
sampling the individual vertices per unit projected solid angle.

The probability of sampling the vertices xs · · ·xt forward with respect to projected solid
angle relates to the probability of sampling all vertices with respect to unit area according
to

t

∏
i=s

G(xi↔ xi−1)
t

∏
i=s

P−→
σ ⊥ (xi−1→ xi) =

t

∏
i=s

PA (xi) (B.4)

Similarly, the probability for backward sampling and surface area sampling relate according
to

t

∏
i=s

G(xi↔ xi+1)
t

∏
i=s

P←−
σ ⊥ (xi← xi+1) =

t

∏
i=s

PA (xi) (B.5)

Using these two equations, it is possible to relate the backward sampling probability per
projected solid angle for a sequence xs · · ·xt to the corresponding forward sampling proba-
bility per projected solid angle using

t

∏
i=s

G(xi↔ xi+1)
t

∏
i=s

P←−
σ ⊥ (xi← xi+1) =

t

∏
i=s

G(xi↔ xi−1)
t

∏
i=s

P−→
σ ⊥ (xi−1→ xi)

t

∏
i=s

P←−
σ ⊥ (xi← xi+1) =

G(xs↔ xs−1)
G(xt ↔ xt+1)

t

∏
i=s

P−→
σ ⊥ (xi−1→ xi)

(B.6)

B.3 Bidirectional sampling

In BDPT, some path vertices are sampled using backward sampling while other vertices
are sampled using forward sampling or surface area sampling. Sampling a sequence of
vertices by combining forward and backward sampling is called bidirectional sampling. For
example, the sequence xr · · ·xt can be constructed by sampling the vertices xr · · ·xs using
forward sampling and sampling xt · · ·xs+1 using backward sampling. The corresponding
sampling probabilities per projected solid angle relate to probabilities per unit surface area
according to

s

∏
i=r

G(xi↔ xi−1)
t

∏
i=s+1

G(xi↔ xi+1)
s

∏
i=r

P−→
σ ⊥ (xi−1→ xi)

t

∏
i=s+1

P←−
σ ⊥ (xi← xi+1) =

t

∏
i=r

PA (xi)

(B.7)
Figure B.3 shows a bidirectionally sampled light transport path. The vertices x0,x1 and x5
are sampled using surface area sampling, x2 is sampled using forward sampling and ver-
tices x3 and x4 are sampled using backward sampling. The figure also shows the sampling
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B.3 Bidirectional sampling Sample probability

probabilities, including conversion factors to convert from projected solid angle to unit area.

Figure B.3: Bidirectional sampled light transport path, including probability conversion
factors.
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Appendix C

Camera Model

Usually, the first two path vertices x0 and x1 on a light transport path are sampled using spe-
cial sampling methods corresponding to the sensor sensitivity function Wj (x1→ x0) used.
The sensor sensitivity function describes how the image is constructed from incoming radi-
ance and models the camera. For a given camera model and corresponding sampling meth-
ods for x0 and x1, the sensor sensitivity function for some pixel j is usually not specified
explicitly but the modified sensor sensitivity function Ŵj (x1→ x0) is specified instead:

Ŵj (x1→ x0) = Wj (x1→ x0)G(x0↔ x1)
1

PI (x0)PA (x1)
(C.1)

Where PI (x0) and PA (x1) are the probability of sampling respectively x0 and x1 per unit
surface area using the sampling methods corresponding to the camera model. In this thesis,
we used a simple finite aperture lens and we will describe this model in more detail in this
appendix.

Figure C.1 visualizes the finite aperture camera model. The first vertex x0 is sampled
directly on the camera lens I with probability PI (x0) per unit surface area. Vertex x1 is
found by sampling a point v on the view plane V and tracing a ray from x0 through v into
the scene. The first intersection between the ray and the scene geometry gives x1. PV (x1) is
the probability of sampling x1 per unit view plane area or, in other words, the probability of
sampling v on the view plane. When applying the Monte Carlo method to the measurement
equation from section 2.1, it is necessary to convert this probability from unit view plane
area to unit surface area. Figure C.1 shows the relation between these measures, and the
corresponding probabilities relate according to

PV (x1)
(~n0 · (x1− x0))

3 =
P−→

σ
(x0→ x1)

l2 |x1− x0|3
=

PA (x1)
l2~n1 · (x0− x1)

(C.2)

In this equation, l is the distance from lens to view plane, also called the focal length, and
~n0 is the view direction. Figure C.1 also shows how the view plane V relates to screen space
S, depending on l, the horizontal and vertical field of view angles θh and θv, and the image
width and height w and h. The point v on the view plane is usually generated by sampling
a point s in screen space S and constructing the corresponding point v on the view plane. If
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Camera Model

Figure C.1: Camera model for a simple camera with finite aperture lens.

PS (x1) is the probability of sampling x1 per unit screen space area (probability of sampling
s in screen space), another conversion factor is required to convert from unit screen space
area to unit view plane area. These probabilities relate according to

4l2 tan(θh) tan(θv)
wh

PV (x1) = PS (x1) (C.3)

Or, using ρ = 4l2 tan(θh) tan(θv)
wh , shortly

ρPV (x1) = PS (x1) (C.4)

Putting everything together, the probability of sampling x1 per unit screen space area relates
to the corresponding probability per unit surface area according to

PA (x1) =
l2~n1 · (x0− x1)

ρ(~n0 · (x1− x0))
3 PS (x1) (C.5)

Hence, for the finite aperture camera model, equation C.1 becomes

Ŵj (x1→ x0) = Wj (x1→ x0)G(x0↔ x1)
ρ(~n0 · (x1− x0))

3

l2~n1 · (x0− x1)
1

PI (x0)PS (x1)
(C.6)

For our simple finite aperture camera model, PI (x0) and PS (x0) are constant. That is; x0
is sampled uniformly on the lens and s is sampled uniformly in screen space. Furthermore,
Ŵj (x1→ x0) = c whenever x1→ x0 passes through pixel j and 0 otherwise, with c a constant
that determines the total sensor sensitivity.
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Appendix D

PT Algorithm

This appendix gives a more detailed description of the path tracing algorithm discussed in
section 2.4. Remember that a path tracer can sample a light transport path as either an
explicit path by making an explicit connection to the light source, or as an implicit path by
accidentally finding a light source without making an explicit connection. In this appendix,
we show how to compute the contribution and MIS weights for explicit and implicit paths.
Using these, the general layout of the path tracing algorithm is given in pseudo code.

D.1 Path contribution

The contribution of a sampled path X = x0 · · ·xk to the Monte Carlo estimate equals f (X)
p(X)

(see section 2.3). When the path is generated using path tracing, part of the path is sampled
using forward sampling. Therefore, the probability of sampling these vertices per projected
solid angle needs to be converted to unit surface area using equation B.4. The measurement
contribution function f (X) shares several factors with the probability p(X) for sampling
explicit and implicit paths per unit path space, which will cancel out in the Monte Carlo
contribution f (X)

p(X) .
Let pI (x0 · · ·xk) be the probability of sampling X as an implicit path. After canceling

out the common factors, the Monte Carlo contribution of an implicit path equals

f j (x0 · · ·xk)
pI (x0 · · ·xk)

= Ŵj (x1→ x0)
k−1

∏
i=1

fr (xi+1→ xi→ xi−1)
P−→

σ ⊥ (xi→ xi+1)
·Le (xk→ xk−1) (D.1)

All geometric factors cancel out because they appear in both equations B.4 and 2.4. Note
that we used the modified sensor sensitivity function Ŵj from appendix C.

Furthermore, let pE (x0 · · ·xk) be the probability of sampling X as an explicit path. After
canceling out the common factors, the contribution for an explicit path becomes

f j (x0 · · ·xk)
pE (x0 · · ·xk)

=Ŵj (x1→ x0)
k−2

∏
i=1

fr (xi+1→ xi→ xi−1)
P−→

σ ⊥ (xi→ xi+1)

· fr (xk→ xk−1→ xk−2)G(xk↔ xk−1)
Le (xk→ xk−1)

PA (xk)

(D.2)
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D.2 MIS weights PT Algorithm

Because the last vertex is not sampled using forward sampling but using surface area sam-
pling, the geometric factor in f j between the last two vertices x3 and x4 does not cancel out
and therefore appears in the final contribution.

Figures D.1 and D.2 show an implicit and explicit sampled light transport path, visu-
alizing the factors in their contributions. The figures give an indication of the order in

Figure D.1: Monte Carlo contribution of implicit path.

Figure D.2: Monte Carlo contribution of explicit path.

which these contributions are computed during sample construction, starting with evaluat-
ing the sensor sensitivity function and iteratively extending the path, evaluating the BSDF
and sample probabilities and finally evaluating the light source emittance.

D.2 MIS weights

As explained in section 2.6, when light transport paths may be sampled through multiple
sampling strategies, the samples need to be combined using Multiple Importance Sampling.
For optimally combining implicit and explicit samples, we need to compute their impor-
tance weights according to the power heuristic. All but the last path vertex are sampled ac-
cording to the same probability distributions for both explicit and implicit paths. Therefore,
when computing the weights for MIS, the common factors cancel out and only the proba-
bilities for sampling the last path vertex using forward sampling and surface area sampling
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PT Algorithm D.3 Algorithm

are used. For implicit paths, the power heuristic equals

wI (x0 · · ·xk) =
pI (x0 · · ·xk)

β

pE (x0 · · ·xk)
β + pI (x0 · · ·xk)

β

=
(P−→

σ ⊥ (xk−1→ xk)G(xk↔ xk−1))
β

PA (xk)
β +(P−→

σ ⊥ (xk−1→ xk)G(xk↔ xk−1))
β

(D.3)

For explicit paths, the power heuristic equals

wE (x0 · · ·xk) =
pE (x0 · · ·xk)

β

pE (x0 · · ·xk)
β + pI (x0 · · ·xk)

β

=
PA (xk)

β

PA (xk)
β +(P−→

σ ⊥ (xk−1→ xk)G(xk↔ xk−1))
β

(D.4)

D.3 Algorithm

Using the contributions and MIS weights from previous sections, we can construct a path
tracing sample and compute its total contribution. Algorithm 5 gives the pseudo code for
generating a PT sample. The algorithm returns the combined contribution of all explicit and
implicit paths in the generated sample. The algorithm starts by generating vertex y0 on the
lens. Then, y1 is sampled by tracing a ray through the view plane according to the sampling
probability PS (y1) per unit screen space area (see appendix C). If the scene is not closed, the
ray may miss all geometry, failing to generate vertex y1. In this case, the path immediately
terminates. Otherwise, the sample is extended iteratively.

During extension, it is first checked to see if the path so far is a valid implicit path. If so,
the corresponding importance weight and contribution are computed and added to the total
sample contribution. In the computation of the importance weight, PA (yi) is the probability
with which yi would have been sampled as the light vertex if this path was constructed as an
explicit path instead. Note that paths of length 1 can only be sampled using implicit paths
and thus their importance weight equals 1.

Then, an explicit connection is made by generating a vertex z on the light source. If
the current vertex yi and the light vertex z are not visible from one another, the connec-
tion failed. Otherwise, the importance and contribution of the explicit path are computed
and added to the total sample contribution. In the computation of the importance weight,
P−→

σ ⊥ (yi−1→ yi→ z) is the probability with which z would have been sampled as the next
path vertex if this path was constructed as an implicit path instead.

Finally, the next path vertex is sampled through forward sampling. This again requires
ray tracing. The path may be terminated for two reasons; either it is terminated through
Russian roulette or the generated output ray misses all geometry, effectively terminating
the path. If the path is not terminated, the path is extended by another vertex during the
next iteration. Note that the Russian roulette probability is assumed to be incorporated in
the sampling probability P−→

σ ⊥(yi→ yi+1). Hence, with non-zero probability, no next vertex
may be generated. When the path has terminated, the total sample contribution is returned.
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D.3 Algorithm PT Algorithm

Algorithm 5 : PT()
color← black

sample y0 ∼ PI (y0)
sample y1 ∼ PS (y1)

fX ← Ŵ (y1→ y0)

i← 0
while path is not terminated do

i← i+1

{Check implicit path}
if Le (yi→ yi−1) > 0 then

if i > 1 then
PA (yi−1→ yi)← P−→

σ ⊥(yi−1→ yi)G(yi−1↔ yi)

wI ←
PA(yi−1→yi)

β

PA(yi)
β+PA(yi−1→yi)

β

else
wI ← 1

end if
color← color +wI fX Le (yi→ yi−1)

end if

{Make explicit connection}
sample z∼ PA (z)
if V (yi↔ z) = 0 then

wE ← PA(z)β

PA(z)β+(P−→
σ⊥(yi−1→yi→z)G(yi↔z))β

color← color +wE fX fr (z→ yi→ yi−1)G(z↔ yi)
Le(z→yi)

PA(z)
end if

{Extend path}
sample yi+1 ∼ P−→

σ ⊥(yi→ yi+1)

fX ← fX ·
fr(yi+1→yi→yi−1)

P−→
σ⊥ (yi→yi+1)

end while

return color
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Appendix E

BDPT Algorithm

This appendix gives a more detailed description of the BiDirectional Path Tracing algorithm
discussed in section 2.7. Remember that BDPT can sample a light transport path through
one of several different bidirectional sampling strategies, including the explicit and implicit
sampling strategies from the PT algorithm. In the last appendix, we already showed how
to compute the contribution for explicit and implicit paths. In this appendix, we show how
to compute the contribution for paths sampled using one of the remaining bidirectional
sampling strategies. Using these contributions and the recursive MIS weights from section
8.2, the general layout of the BDPT algorithm is given in pseudo code.

E.1 Path contribution

The contribution of a sampled path X = x0 · · ·xk to the Monte Carlo estimate equals f (X)
p(X) (see

section 2.3). Just like paths sampled through path tracing, the measurement contribution
function f (X) shares several factors with the probability p(X) for bidirectionally sampling
paths per unit path space, which again cancel out in the Monte Carlo contribution f (X)

p(X) .

Remember from section 2.7 that a path X = x0 · · ·xk of length k can be sampled using
either one of k + 1 sampling strategies. Furthermore, p̂s (X) is the probability of bidirec-
tionally sampling X by connecting the eye path x0 · · ·xs of length s1 with the light path
xs+1 · · ·xk of length t = k− s. Paths sampled using light paths of length t = 0 and t = 1 cor-
respond to implicit and explicit paths as sampled by a path tracer. We already showed how
common factors cancel out in the contribution of implicit and explicit paths in appendix D.
What is left are the contributions for paths sampled using any of the remaining bidirectional
sampling strategies.

For paths sampled with a zero length eye path (s = 0), all vertices except x0 are sampled
as part of the light path. After combining equations B.7, C.6 and 2.4 and canceling out the

1Note that because x0 is also part of the eye path, an eye path of length s contains s+1 vertices.
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E.1 Path contribution BDPT Algorithm

common factors, the Monte Carlo contribution of these paths equals

f j (x0 · · ·xk)
p0 (x0 · · ·xk)

=Ŵj (x1→ x0)
l2~n1 · (x0−x1)

ρ(~n0 · (x1−x0))
3 PS (x1)

fr (x2→ x1→ x0)
k−1

∏
j=2

fr (x j+1→ x j→ x j−1)
P←−

σ ⊥ (x j−1← x j)

Le (xk→ xk−1)
PA (xk)P←−

σ ⊥ (xk−1← xk)

(E.1)

Note that we used the modified sensor sensitivity function Ŵj from appendix C. For all other
bidirectional strategies, using Ŵj removes the conversion factor from unit screen space to
unit surface area resulting from sampling x1 per unit screen space. However, when s = 0,
x1 is sampled as part of the light path and is therefore not sampled per unit screen space.
Hence, no conversion is required. Consequently, using Ŵj introduces an extra correction

factor l2~n1·(x0−x1)
ρ(~n0·(x1−x0))

3 .
Finally for the remaining sampling strategies with 0 < s < k−1, after canceling out the

common factors, the Monte Carlo contribution of a path equals

f j (x0 · · ·xk)
ps (x0 · · ·xk)

=Ŵj (x1→ x0)

s−1

∏
j=1

fr (x j+1→ x j→ x j−1)
P−→

σ ⊥ (x j→ x j+1)

fr (xs+1→ xs→ xs−1)G(xs↔ xs+1) fr (xs+2→ xs+1→ xs)
k−1

∏
j=s+2

fr (x j+1→ x j→ x j−1)
P←−

σ ⊥ (x j−1← x j)

Le (xk→ xk−1)
PA (xk)P←−

σ ⊥ (xk−1← xk)

(E.2)

All geometric factors on the eye and light path cancel out because they appear in both
equation B.7 and 2.4. The only remaining geometric factor corresponds to the connection
edge between xs and xs+1.

Figures E.1 and E.2 show light transport paths sampled with bidirectional sampling
strategies corresponding to s = 0 and s = 2. The figures visualize the factors in these paths’
Monte Carlo contributions. The figures also give an indication of the order in which these
contributions are computed during sample construction. For the eye path, construction starts
with evaluating the sensor sensitivity function and iteratively extending the eye path, evalu-
ating the BSDF and sample probabilities. For the light path, construction starts with evaluat-
ing the light source emittance and iteratively extending the light path, evaluating the BSDF
and sample probabilities. Finally, the eye and light path are explicitly connected and the
connection is evaluated.

The computation of MIS weights for bidirectionally sampled paths using the power
heuristic has already been discussed in detail in section 8.2.
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Figure E.1: Monte Carlo contribution of path sampled by connecting a light path directly to
the eye.

Figure E.2: Monte Carlo contribution of bidirectional sampled path.

E.2 Algorithm

Using the contributions from the previous section and the recursive MIS weights from sec-
tion 8.2, we can now construct a BDPT sample. The pseudo code for generating such a
sample is given by algorithms 6, 7 and 8.

Algorithm 6 generates an eye path y0 · · ·yNE and is somewhat similar to the path trac-
ing algorithm (see algorithm 5), but without the evaluation of explicit and implicit paths.
Instead, the recursive MIS quantities for the path vertices are computed. The algorithm
samples the first two vertices according to the camera model and iteratively extends the
path with extra vertices until the path terminates. As with the path tracing algorithm in
appendix D, the eye path is terminated either because the extension ray misses all scene
geometry or due to Russian roulette. Again, the Russian roulette probability is assumed to
be incorporated in the forward sampling probability. Note the special case which occurs
while extending vertex x1. This special case allows us to use the modified sensor sensitivity
function Ŵj and relieves us from evaluating P←−

σ ⊥(y0← y1)β.
Algorithm 7 looks a lot like algorithm 6 and generates a light path z1 · · ·zNL . The main

difference is that the first vertex z1 is sampled on the light source instead of on the lens and
that the second vertex z2 is sampled using backward sampling from the light source. No
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E.2 Algorithm BDPT Algorithm

Algorithm 6 : SampleEyePath

sample y0 ∼ PI (y0)
sample y1 ∼ PS (y1)

PY
0 ← PI (y0)

DY
0 ← 0

FY
0 ← Ŵ (y1→ y0)

i← 0
while path is not terminated do

i← i+1
sample yi+1 ∼ P−→

σ ⊥(yi→ yi+1)
if i = 1 then

PY
1 ← PY

0 ·PS (y1)
DY

1 ← PY
0

else
PY

i ← PY
i−1 ·P−→σ ⊥(yi−1→ yi)βG(yi−1↔ yi)

β

DY
i ← PY

i−1 +DY
i−1 ·P←−σ ⊥(yi−1← yi)βG(yi↔ yi−1)

β

end if
FY

i ← FY
i−1 ·

fr(yi+1→yi→yi−1)
P−→

σ⊥ (yi→yi+1)
end while
NE ← i

special case is required when extending z2.
After both the eye and light path are sampled, algorithm 8 evaluates all connections and

computes the total sample contribution. The algorithm iterates over all NE +1 eye vertices,
checking for implicit paths. If an implicit path is encountered, the path contribution and
importance are computed and added to the image along the first path edge. For each eye
vertex, connections are made to all NL light vertices on the light path. For each pair, a
connection is established. If the vertices are not visible from one another, the connection
failed. Otherwise, the importance and contribution of the path are computed and added to
the image along the first path edge. Note that special care must be taken when the vertices
y0 and z1 are involved in the connection. Also, instead of accumulating the total sample
contribution as done in PT algorithm 5, all contributions are directly accumulated on the
image. This is necessary because not all paths in the sample contribute to the same image
pixel.
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Algorithm 7 : SampleLightPath

sample z1 ∼ PA (z1)
sample z2 ∼ P−→

σ ⊥(z1→ z2)

PZ
1 ← PA (z1)

DZ
1 ← 1

FZ
1 ← Le (z2→ z1)

i← 1
while path is not terminated do

i← i+1
sample zi+1 ∼ P−→

σ ⊥(zi→ zi+1)
FZ

i ← FZ
i−1 ·

fr(zi−1→zi→zi+1)
P−→

σ⊥ (zi→zi+1)

PZ
i ← PZ

i−1 ·P−→σ ⊥(zi−1→ zi)βG(zi−1↔ zi)
β

DZ
i ← PZ

i−1 +DZ
i−1 ·P←−σ ⊥(zi−1← zi)βG(zi↔ zi−1)

β

end while
NL← i
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Algorithm 8 : Connect
for i = 0 to NE do
{Check implicit path}
if i > 0 and Le (yi→ yi−1) then

D← PY
i +PA (yi)DY

i−1
F ← FY

i−1Le (yi→ yi−1)

w← PY
i

D
contribute wF along edge y0y1

end if

{Connect to light path}
for j = 1 to NL do

if yi is visible from z j then

D← PY
i PZ

j

if i > 0 then
PA(z j→ yi)← P−→

σ ⊥(z j→ yi)G(yi↔ z j)
PA(yi−1← yi)← P←−

σ ⊥(yi−1← yi)G(yi↔ yi−1)

D← D+PZ
j PA (z j→ yi)

β
(

PY
i−1 +PA (yi−1← yi)

β DY
i−1

)
F ← FE

i−1 fr (z j→ yi→ yi−1)G(yi↔ z j)
else

F ← Ŵ (z j→ y0)
l2~nz j ·(y0−z j)

ρ(~ny0 ·(z j−y0))
3 PS (z j)

end if

PA(yi→ z j)← P−→
σ ⊥(yi→ z j)G(yi↔ z j)

if j > 1 then
PA(z j−1← z j)← P←−

σ ⊥(z j−1← z j)G(z j↔ z j−1)

D← D+PY
i PA (yi→ z j)

β
(

PZ
j−1 +PA (z j−1← z j)

β DZ
j−1

)
F ← F ·FL

j−1 fr (z j+1→ z j→ yi)
else

D← D+PY
i PA (yi→ z1)

β

F ← F ·Le (z1→ yi)
end if

w← PY
i PZ

j
D

if i = 0 then
contribute wF along edge y0z j

else
contribute wF along edge y0y1

end if
end if

end for
end for154



Appendix F

MLT Mutations

This appendix gives a detailed description of the lens and caustic mutations in the MLT algo-
rithm as discussed in section 2.9. Remember that the MLT algorithm generates a sequence
of light transport paths through mutations. A mutation transforms a path X into a new path
Y by making small changes to the original path. Two important mutation strategies are
the lens and caustic mutation. Both mutation strategies mutate the first m + 1 path vertices
on a path X = x0 · · ·xk into y0 · · ·ym to form the mutated path Y = y0 · · ·ymxm+1 · · ·xk. The
lens mutation starts from the eye and mutates the vertices through forward sampling. The
caustic mutation starts somewhere on the path and mutating backwards towards the eye (for
the caustic mutation, m < k). Both mutations preserve the path length (See section 2.9 for
more details on the mutation strategies). In this appendix, we will show how to compute the
acceptance probability for the lens and caustic mutation strategies and show the algorithms
for generating such mutations in pseudo code.

F.1 Acceptance probability

Remember from section 2.8 that for some path Y that is generated from path X through
mutations, the acceptance probability in the MLT algorithm is defined as

a = min
(

1,
f (Y) p(X|Y)
f (X) p(Y|X)

)
(F.1)

Because usually only a part of the path is mutated, many of the factors in this equation
cancel out.

Lets start with the measurement contribution factor f (Y)
f (X) in the acceptance probability.

When 0 < m < k, that is, only the first m+1 vertices on the path are mutated and the remain-
ing vertices xm+1 · · ·xk = ym+1 · · ·yk stay the same, some of the factors in both measurement
contribution functions cancel out, resulting in

f (y0 · · ·yk)
f (x0 · · ·xk)

=
Wi (y1→ y0)
Wi (x1→ x0)

m

∏
j=0

G(y j↔ y j+1)
G(x j↔ x j+1)

m+1

∏
j=1

fr (y j+1→ y j→ y j−1)
fr (x j+1→ x j→ x j−1)

(F.2)
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In case the entire path is mutated by a lens mutation (m = k), no common factors appear
and the the measurement contribution factor becomes

f (y0 · · ·yk)
f (x0 · · ·xk)

=
Wi (y1→ y0)
Wi (x1→ x0)

k−1

∏
j=0

G(y j↔ y j+1)
G(x j↔ x j+1)

k

∏
j=1

fr (y j+1→ y j→ y j−1)
fr (x j+1→ x j→ x j−1)

(F.3)

Note that in these equations, we used, for convenience, the special notation Le (xk→ xk−1) =
fr (xk+1→ xk→ xk−1). In this case, xk+1 can be thought of as an implicit vertex on all light
transport paths being the source of all light in the scene [50].

What is left is the probability factor p(X|Y)
p(Y|X) in the acceptance probability. Because the

lens and caustic mutations are sampled differently, this factor differs for both mutations
strategies. Let’s start with the lens mutation. The lens mutation mutates the first m + 1
path vertices of a path through forward sampling. Because part of the mutation is sampled
forward, some mutation probabilities must be converted from unit projected solid angle to
unit surface area (see appendix D). Now let Pm

L (Y|X) be the probability of generating Y
from X per unit path space, using the lens mutation. Then, using the conversion factors
from equations B.4 and C.2, we get

Pm
L (X|Y)

pm
L (Y|X)

=
l2~n1 · (x1− x0)
l2~n1 · (y1− y0)

ρ(~n0 · (y1− y0))
3

ρ(~n0 · (x1− x0))
3

m−1

∏
i=1

G(xi↔ xi+1)
G(yi↔ yi+1)

· PI (x0|Y)PS (x1|Y)
PI (y0|X)PS (y1|X)

m−1

∏
i=1

P−→
σ ⊥ (xi→ xi+1|Y)

P−→
σ ⊥ (yi→ yi+1|X)

(F.4)

Similarly, the caustic mutation mutates the first m + 1 path vertices of a path, this time
through backward sampling. Because part of the mutation is sampled backward, some mu-
tation probabilities must again be converted from unit projected solid angle to unit surface
area (see appendix D). Let Pm

C (Y|X) be the probability of generating Y from X per unit
path space, using the caustic mutation. Then, using the conversion factors from equation
B.5, we get

Pm
C (X|Y)

pm
C (Y|X)

=
m

∏
i=1

G(xi↔ xi+1)
G(yi↔ yi+1)

· PI (x0|Y)
PI (y0|X)

m−1

∏
i=1

P←−
σ ⊥ (xi← xi+1|Y)

P←−
σ ⊥ (yi← yi+1|X)

· P
←−
σ ⊥ (xm← ym+1|Y)

P←−
σ ⊥ (ym← xm+1|X)

(F.5)

The acceptance probability term f (Y)p(X|Y)
f (X)p(Y|X) can now be obtained by combining the above

equations. Note that geometric factors appear in both the measurement contribution factor
f (Y)
f (X) and the probability factor p(X|Y)

p(Y|X) . Many of these common factors will cancel out in the
final acceptance probability.

Figures F.1 and F.2 show how to compute the acceptance probability term for the lens
mutation after all common factors are canceled out. Figures F.1 shows a partially mutated
path, requiring an explicit connection, while figure F.2 shows a fully mutated path. The
figures give an indication of the order in which the acceptance probability term is computed
during mutation construction, starting with evaluating the modified sensor sensitivity func-
tion and iteratively extending the mutation with one vertex, evaluating the BSDF and sample
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Figure F.1: Acceptance probability for partial lens mutation.

Figure F.2: Acceptance probability for full lens mutation.

Figure F.3: Acceptance probability for partial caustic mutation.

probabilities and finally evaluating the connection or light source emittance. Note that we
used the modified sensor sensitivity function for the finite aperture lens from appendix C.

Figures F.3 and F.4 show how to compute the acceptance probability term for the caustic
mutation. Figures F.3 shows a partially mutated path, starting somewhere in the middle of
the path, while figure F.4 shows a fully mutated path, starting at the light source. Again, the
figures give an indication of the order in which the acceptance probability term is computed
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Figure F.4: Acceptance probability for full caustic mutation.

during mutation construction, starting at the light source or an intermediate vertex and iter-
atively extending the mutation backwards with one vertex, evaluating the BSDF and sample
probabilities and finally making an explicit connection to the eye and evaluating the sensor
sensitivity function. Similar to the bidirectional sample in figure E.1, the use of the mod-
ified sensor sensitivity function in the caustic mutation requires an extra correction factor

l2~n1·(x0−x1)
ρ(~n0·(x1−x0))

3 because vertex x1 is sampled backward.

In practice, most mutations are symmetrical, so the fraction PI(x0|Y)
PI(y0|X) , PS(x1|Y)

PS(y1|X) ,
P←−

σ⊥ (xi←xi+1|Y)
P←−

σ⊥ (yi←yi+1|X)

and
P−→

σ⊥ (xi→xi+1|Y)
P−→

σ⊥ (yi→yi+1|X) all cancel out to 1, significantly simplifying the computations.

F.2 Algorithm

Using the acceptance probability formulations from the previous section, we now give
pseudo code for the lens and caustic mutations. Algorithm 9 and 10 give the caustic and
lens mutation algorithms in pseudo code. The algorithms take an initial path Xk of length
k and the number m, indicating the number of vertices to mutate, as input and return the
mutated path y0 · · ·yk and the corresponding acceptance probability.

Both algorithms start with mutating the eye vertex x0. Note that this is only relevant
when using a finite aperture lens. The caustic mutation proceeds with mutating the path
vertices backward and finally making an explicit connection to the mutated eye vertex. The
lens mutation first mutates path vertex x1, according to the camera model (see appendix C),
before mutating the remaining vertices forward from the eye. If not all vertices are mutated,
an explicit connection is established.

Whenever one of the algorithms terminate before completing the mutation, for example
because an explicit connection failed or an extension ray misses all scene geometry, effec-
tively terminating the mutation, a zero acceptance probability is returned. No mutated path
is returned as it will be rejected anyway.
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Algorithm 9 : CausticMutation(Xk,m)

{Mutate the first m+1 vertices}
sample y0 ∼ PI (y0|x0)
ym+1 · · ·yk = xm+1 · · ·xk

T ← PI(x0|y0)
PI(y0|x0)

for i = m to 1 do
sample yi ∼ P←−

σ ⊥ (yi← yi+1|xixi+1)
if path is terminated then

return 0
end if
T ← T · P←−

σ⊥ (xi←xi+1|yiyi+1)
P←−

σ⊥ (yi←yi+1|xixi+1)
if i+1 = k then

T ← T · Le(yk→yk−1)
Le(xk→xk−1)

else
T ← T · fr(yi+2→yi+1→yi)

fr(xi+2→xi+1→xi)
end if

end for
if V (y0↔ y1) = 0 then

return 0
end if
T ← T · Ŵi(y1→y0)

Ŵi(x1→x0)
ρ(~nx0 ·(x1−x0))3

ρ(~ny0 ·(y1−y0))
3

l2~ny1 ·(y0−y1)
l2~nx1 ·(x0−x1)

T ← T · fr(y2→y1→y0)
fr(x2→x1→x0)

{Return acceptance probability and mutated path}
return 〈min(1,T ) ,y0 · · ·yk〉
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Algorithm 10 : LensMutation(Xk,m)

{Mutate the first m+1 vertices}
sample y0 ∼ PI (y0|x0)
sample y1 ∼ PS (y1|x1)
if path is terminated then

return 0
end if
T ← Ŵi(y1→y0)

Ŵi(x1→x0)
PI(x0|y0)PS(x1|y1)
PI(y0|x0)PS(y1|x1)

for i = 2 to m do
sample yi ∼ P−→

σ ⊥ (yi−1→ yi|xi−1xi)
if path is terminated then

return 0
end if
T ← T · fr(yi→yi−1→yi−2)

fr(xi→xi−1→xi−2)
P−→

σ⊥(xi−1→xi|yi−1yi)
P−→

σ⊥(yi−1→yi|xi−1xi)
end for

{Make an explicit connection}
if m < k then

if V (ym↔ ym+1) = 0 then
return 0

end if
T ← T · G(ym↔ym+1)

G(xm↔xm+1)
fr(ym+1→ym→ym−1)
fr(xm+1→xm→xm−1)

ym+1 · · ·yk = xm+1 · · ·xk
end if

if m≥ k−1 then
T ← T · Le(yk→yk−1)

Le(xk→xk−1)
else

T ← T · fr(ym+2→ym+1→ym)
fr(xm+2→xm+1→xm)

end if

{Return acceptance probability and mutated path}
return 〈min(1,T ) ,y0 · · ·yk〉
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